-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognizer-sklearn.py
33 lines (27 loc) · 1.01 KB
/
recognizer-sklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import numpy as np
import matplotlib.pyplot as pt
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
# Read training images
data = pd.read_csv("trainingsample.csv").values
training_pixels = data[0:, 1:]
training_labels = data[0:, 0]
# Train
clf = DecisionTreeClassifier()
clf.fit(training_pixels, training_labels)
# Read validation images
validation_data = pd.read_csv("validationsample-bigger.csv").values
validation_pixels = validation_data[0:, 1:]
validation_labels = validation_data[0:, 0]
# Predict the labels (digits)
predicted_labels = clf.predict(validation_pixels)
# Measure the accuracy of the model
labels_count = len(validation_labels)
matches_count = sum(p == v for p, v in zip(predicted_labels, validation_labels))
print ("Accuracy: {0:.02%}".format(matches_count / labels_count))
# Plot an image, see if it matches the predicted digit
image = validation_pixels[8]
image.shape = (28, 28)
pt.imshow(255 - image, cmap = 'gray')
print("Digit: ", clf.predict([validation_pixels[8]])[0])
pt.show()