-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrl_pipeline.py
362 lines (310 loc) · 19.3 KB
/
rl_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import torch.nn as nn
from utils.statistics import RewardStatistics, LagrangianStatistics
from utils.time_log import time_since
import time
from sequence_generator import SequenceGenerator
from utils.report import export_train_and_valid_reward, export_lagrangian_stats
import sys
import logging
from validation import evaluate_reward
from utils.reward import *
import math
from utils import io
import os
from utils.io import tokenize
import nltk
from cytoolz import concat
from utils.cost import compute_batch_cost
from utils.io import remove_old_ckpts
EPS = 1e-8
def train_model(model, optimizer_rl, train_data_loader, valid_data_loader, opt, lagrangian_params=None):
total_batch = -1
early_stop_flag = False
report_train_reward_statistics = RewardStatistics()
total_train_reward_statistics = RewardStatistics()
report_train_reward = []
report_valid_reward = []
if opt.constrained_mdp:
report_train_lagrangian_statistics = LagrangianStatistics()
report_lagrangian_loss = []
report_lagrangian_multipliers = []
report_violate_amounts = []
report_lagrangian_grad_norms = []
lagrangian_model, optimizer_lagrangian = lagrangian_params
best_valid_reward = float('-inf')
num_stop_increasing = 0
if opt.train_from: # opt.train_from:
raise ValueError("Not implemented the function of load from trained model")
generator = SequenceGenerator(model,
bos_idx=io.BOS,
eos_idx=io.EOS,
pad_idx=io.PAD,
beam_size=1,
max_sequence_length=opt.pred_max_len,
cuda=opt.gpuid > -1,
n_best=1
)
model.train()
for epoch in range(opt.start_epoch, opt.epochs+1):
if early_stop_flag:
break
for batch_i, batch in enumerate(train_data_loader):
total_batch += 1
stat, log_selected_token_dist = train_one_batch(batch, generator, optimizer_rl, opt, lagrangian_params)
if opt.constrained_mdp:
batch_reward_stat, batch_lagrangian_stat = stat
else:
batch_reward_stat = stat
report_train_reward_statistics.update(batch_reward_stat)
total_train_reward_statistics.update(batch_reward_stat)
if opt.constrained_mdp:
report_train_lagrangian_statistics.update(batch_lagrangian_stat)
if total_batch % opt.checkpoint_interval == 0:
print("Epoch %d; batch: %d; total batch: %d" % (epoch, batch_i, total_batch))
sys.stdout.flush()
"""
if total_batch % 20 == 0:
print("lagrangian loss: {:.5f}; grad_norm: {:.5f}; violate_amount: {:.5f}".format(report_train_lagrangian_statistics.loss(), report_train_lagrangian_statistics.grad_norm(), report_train_lagrangian_statistics.violate_amt()))
print("lagrangian value: {}".format(lagrangian_model.get_lagrangian_multiplier_array()))
report_train_lagrangian_statistics.clear()
print("threshold: {}".format(lagrangian_model.cost_threshold.cpu().numpy()))
"""
# Checkpoint, decay the learning rate if validation loss stop dropping, apply early stopping if stop decreasing for several epochs.
# Save the model parameters if the validation loss improved.
if epoch >= opt.start_checkpoint_at:
if (opt.checkpoint_interval == -1 and batch_i == len(train_data_loader) - 1) or \
(opt.checkpoint_interval > -1 and total_batch > 1 and total_batch % opt.checkpoint_interval == 0):
print("Enter check point!")
sys.stdout.flush()
# log training reward and pg loss
current_train_reward = report_train_reward_statistics.reward()
current_train_pg_loss = report_train_reward_statistics.loss()
report_train_reward.append(current_train_reward)
# Run validation and log valid reward
valid_reward_stat = evaluate_reward(valid_data_loader, generator, opt)
model.train()
current_valid_reward = valid_reward_stat.reward()
report_valid_reward.append(current_valid_reward)
# print out train and valid reward
logging.info('Epoch: %d; batch idx: %d; total batches: %d' % (epoch, batch_i, total_batch))
logging.info(
'avg training reward: %.4f; avg training loss: %.4f; avg validation reward: %.4f; best validation reward: %.4f' % (
current_train_reward, current_train_pg_loss, current_valid_reward, best_valid_reward))
# log lagrangian training loss and last lagrangian value
if opt.constrained_mdp:
current_lagrangian_loss = report_train_lagrangian_statistics.loss()
current_lagrangian_grad_norm = report_train_lagrangian_statistics.grad_norm()
current_violate_amount = report_train_lagrangian_statistics.violate_amt()
report_lagrangian_loss.append(current_lagrangian_loss)
report_violate_amounts.append(current_violate_amount)
report_lagrangian_grad_norms.append(current_lagrangian_grad_norm)
lagrangian_multipliers_array = lagrangian_model.get_lagrangian_multiplier_array()
report_lagrangian_multipliers.append(lagrangian_multipliers_array)
logging.info("Lagrangian_loss: %.5f; grad_norm: %.5f; violate_amount: %.5f" % (current_lagrangian_loss, current_lagrangian_grad_norm, current_violate_amount))
logging.info("Value of lagrangian_multipliers: {}".format(lagrangian_multipliers_array))
if epoch >= opt.start_decay_and_early_stop_at:
if current_valid_reward > best_valid_reward: # update the best valid reward and save the model parameters
print("Valid reward increases")
sys.stdout.flush()
best_valid_reward = current_valid_reward
num_stop_increasing = 0
check_pt_model_path = os.path.join(opt.model_path, 'ckpt', '%s-epoch-%d-total_batch-%d-valid_reward-%.3f' % (
opt.exp, epoch, total_batch, current_valid_reward))
torch.save( # save model parameters
model.state_dict(),
open(check_pt_model_path, 'wb')
)
logging.info('Saving checkpoint to %s' % check_pt_model_path)
else:
print("Valid reward does not increase")
sys.stdout.flush()
num_stop_increasing += 1
# decay the learning rate by the factor specified by opt.learning_rate_decay
decay_learning_rate(optimizer_rl, opt.learning_rate_decay, opt.min_lr)
# decay the learning rate for lagrangian multiplier
if opt.constrained_mdp and opt.decay_multiplier_learning_rate:
logging.info("Decay learning rate of lagrangian multiplier....")
decay_learning_rate(optimizer_lagrangian, 0.5, 1e-8)
if not opt.disable_early_stop:
if num_stop_increasing >= opt.early_stop_tolerance:
logging.info('Have not increased for %d check points, early stop training' % num_stop_increasing)
early_stop_flag = True
break
report_train_reward_statistics.clear()
if opt.constrained_mdp:
report_train_lagrangian_statistics.clear()
# export the training curve
train_valid_curve_path = opt.exp_path + '/train_valid_curve'
export_train_and_valid_reward(report_train_reward, report_valid_reward, opt.checkpoint_interval, train_valid_curve_path)
if opt.constrained_mdp:
export_lagrangian_stats(report_lagrangian_loss, report_lagrangian_multipliers, report_lagrangian_grad_norms, report_violate_amounts, opt.checkpoint_interval, opt.exp_path)
# Only keep the highest three checkpoints
remove_old_ckpts(opt.model_path, reverse=True)
def train_one_batch(batch, generator, optimizer, opt, lagrangian_params=None):
src, src_lens, src_mask, src_oov, oov_lists, src_str_list, trg_sent_2d_list, _, _, _, _, _ = batch
"""
src: a LongTensor containing the word indices of source sentences, [batch, src_seq_len], with oov words replaced by unk idx
src_lens: a list containing the length of src sequences for each batch, with len=batch
src_mask: a FloatTensor, [batch, src_seq_len]
src_oov: a LongTensor containing the word indices of source sentences, [batch, src_seq_len], contains the index of oov words (used by copy)
oov_lists: a list of oov words for each src, 2dlist
"""
# move data to GPU if available
src = src.to(opt.device)
src_mask = src_mask.to(opt.device)
src_oov = src_oov.to(opt.device)
optimizer.zero_grad()
batch_size = src.size(0)
reward_type = opt.reward_type
sent_level_reward = opt.sent_level_reward
baseline = opt.baseline
regularization_type = opt.regularization_type
regularization_factor = opt.regularization_factor
if regularization_type == 2:
entropy_regularize = True
else:
entropy_regularize = False
trg_sent_2d_list_tokenized = [] # each item is a list of target sentences (tokenized) for an input sample
trg_str_list = [] # each item is the target output sequence (tokenized) for an input sample
for trg_sent_list in trg_sent_2d_list:
trg_sent_list = [trg_sent.strip().split(' ') for trg_sent in trg_sent_list]
trg_sent_2d_list_tokenized.append(trg_sent_list)
trg_str_list.append(list(concat(trg_sent_list)))
trg_sent_2d_list = trg_sent_2d_list_tokenized # each item is a list of target sentences (tokenized) for an input sample
# if use self critical as baseline, greedily decode a sequence from the model
if baseline == 'self':
# sample greedy prediction
generator.model.eval()
with torch.no_grad():
greedy_sample_list, _, _, greedy_eos_idx_mask, _, _ = generator.sample(src, src_lens, src_oov, src_mask,
oov_lists, greedy=True,
entropy_regularize=False)
greedy_str_list = sample_list_to_str_list(greedy_sample_list, oov_lists, opt.idx2word, opt.vocab_size,
io.EOS,
io.UNK, opt.replace_unk,
src_str_list)
greedy_sent_2d_list = []
for greedy_str in greedy_str_list:
greedy_sent_list = nltk.tokenize.sent_tokenize(' '.join(greedy_str))
greedy_sent_list = [greedy_sent.strip().split(' ') for greedy_sent in greedy_sent_list]
greedy_sent_2d_list.append(greedy_sent_list)
# compute reward of greedily decoded sequence, tensor with size [batch_size]
baseline = compute_batch_reward(greedy_str_list, greedy_sent_2d_list, trg_str_list, trg_sent_2d_list,
batch_size, reward_type=reward_type,
regularization_factor=0.0,
regularization_type=0, entropy=None, device=src.device)
generator.model.train()
# sample a sequence from the model
# sample_list is a list of dict, {"prediction": [], "scores": [], "attention": [], "done": True}, prediction is a list of 0 dim tensors
# log_selected_token_dist: size: [batch, output_seq_len]
# sample sequences for multiple times
sample_batch_size = batch_size * opt.n_sample
src = src.repeat(opt.n_sample, 1)
src_lens = src_lens * opt.n_sample
src_mask = src_mask.repeat(opt.n_sample, 1)
src_oov = src_oov.repeat(opt.n_sample, 1)
oov_lists = oov_lists * opt.n_sample
src_str_list = src_str_list * opt.n_sample
trg_sent_2d_list = trg_sent_2d_list * opt.n_sample
trg_str_list = trg_str_list * opt.n_sample
if opt.baseline != 'none': # repeat the greedy rewards
#baseline = np.tile(baseline, opt.n_sample)
baseline = baseline.repeat(opt.n_sample) # [sample_batch_size]
start_time = time.time()
sample_list, log_selected_token_dist, output_mask, pred_eos_idx_mask, entropy, location_of_eos_for_each_batch = generator.sample(
src, src_lens, src_oov, src_mask, oov_lists, greedy=False, entropy_regularize=entropy_regularize)
pred_str_list = sample_list_to_str_list(sample_list, oov_lists, opt.idx2word, opt.vocab_size, io.EOS,
io.UNK, opt.replace_unk, src_str_list) # a list of word list, len(pred_word_2dlist)=sample_batch_size
sample_time = time_since(start_time)
max_pred_seq_len = log_selected_token_dist.size(1)
pred_sent_2d_list = [] # each item is a list of predicted sentences (tokenized) for an input sample, used to compute summary level Rouge-l
for pred_str in pred_str_list:
pred_sent_list = nltk.tokenize.sent_tokenize(' '.join(pred_str))
pred_sent_list = [pred_sent.strip().split(' ') for pred_sent in pred_sent_list]
pred_sent_2d_list.append(pred_sent_list)
if entropy_regularize:
entropy_array = entropy.data.cpu().numpy()
else:
entropy_array = None
# compute the reward
with torch.no_grad():
if sent_level_reward:
raise ValueError("Not implemented.")
else: # neither using reward shaping
# only receive reward at the end of whole sequence, tensor: [sample_batch_size]
cumulative_reward = compute_batch_reward(pred_str_list, pred_sent_2d_list, trg_str_list, trg_sent_2d_list, sample_batch_size, reward_type=reward_type,
regularization_factor=regularization_factor, regularization_type=regularization_type, entropy=entropy_array, device=src.device)
# store the sum of cumulative reward (before baseline) for the experiment log
cumulative_reward_sum = cumulative_reward.detach().sum(0).item()
if opt.constrained_mdp:
lagrangian_model, optimizer_lagrangian = lagrangian_params
cumulative_cost = compute_batch_cost(pred_str_list, pred_sent_2d_list, trg_str_list, trg_sent_2d_list, sample_batch_size, opt.cost_types, src.device) # [sample_batch_size, num_cost_types]
#cumulative_cost = torch.from_numpy(cumulative_cost_array).type(torch.FloatTensor).to(src.device)
# cumulative_cost: [sample_batch_size, len(cost_types)]
# subtract the regularization term: \lambda \dot C_t
constraint_regularization = lagrangian_model.compute_regularization(cumulative_cost) # [sample_batch_size]
cumulative_reward -= constraint_regularization
# Subtract the cumulative reward by a baseline if needed
if opt.baseline != 'none':
cumulative_reward = cumulative_reward - baseline # [sample_batch_size]
# q value estimation for each time step equals to the (baselined) cumulative reward
q_value_estimate = cumulative_reward.unsqueeze(1).repeat(1, max_pred_seq_len) # [sample_batch_size, max_pred_seq_len]
#q_value_estimate_array = np.tile(cumulative_reward.reshape([-1, 1]), [1, max_pred_seq_len]) # [batch, max_pred_seq_len]
#shapped_baselined_reward = torch.gather(shapped_baselined_phrase_reward, dim=1, index=pred_phrase_idx_mask)
# use the return as the estimation of q_value at each step
#q_value_estimate = torch.from_numpy(q_value_estimate_array).type(torch.FloatTensor).to(src.device)
q_value_estimate.requires_grad_(True)
q_estimate_compute_time = time_since(start_time)
# compute the policy gradient objective
pg_loss = compute_pg_loss(log_selected_token_dist, output_mask, q_value_estimate)
# back propagation to compute the gradient
if opt.loss_normalization == "samples": # use number of target tokens to normalize the loss
normalization = opt.n_sample
elif opt.loss_normalization == 'batches': # use batch_size to normalize the loss
normalization = sample_batch_size
else:
normalization = 1
start_time = time.time()
pg_loss.div(normalization).backward()
backward_time = time_since(start_time)
if opt.max_grad_norm > 0:
grad_norm_before_clipping = nn.utils.clip_grad_norm_(generator.model.parameters(), opt.max_grad_norm)
# take a step of gradient descent
optimizer.step()
stat = RewardStatistics(cumulative_reward_sum, pg_loss.item(), sample_batch_size, sample_time, q_estimate_compute_time, backward_time)
# (final_reward=0.0, pg_loss=0.0, n_batch=0, sample_time=0, q_estimate_compute_time=0, backward_time=0)
# reward=0.0, pg_loss=0.0, n_batch=0, sample_time=0, q_estimate_compute_time=0, backward_time=0
if opt.constrained_mdp:
lagrangian_loss, lagrangian_grad_norm, violate_amount = train_lagrangian_multiplier(lagrangian_model, cumulative_cost, optimizer_lagrangian, normalization, opt.max_grad_norm)
lagrangian_stat = LagrangianStatistics(lagrangian_loss=lagrangian_loss, n_batch=sample_batch_size, lagrangian_grad_norm=lagrangian_grad_norm, violate_amount=violate_amount)
stat = (stat, lagrangian_stat)
return stat, log_selected_token_dist.detach()
def train_lagrangian_multiplier(lagrangian_model, cumulative_cost, optimizer, normalization, max_grad_norm):
"""
:param lagrangian_multiplier: [batch, len(cost_types)]
:param cumulative_cost: [batch, len(cost_types)]
:param cost_threshold: [len(cost_types)]
:param optimizer:
:param normalization
:return:
"""
optimizer.zero_grad()
lagrangian_loss, violate_amount = lagrangian_model(cumulative_cost)
lagrangian_loss.div(normalization).backward()
grad_norm = lagrangian_model.lagrangian_multiplier.grad.detach().sum().item()
#grad_norm = lagrangian_model.lagrangian_multiplier.grad.detach().norm(2).item()
#grad_norm_before_clipping = nn.utils.clip_grad_norm_(lagrangian_model.parameters(), max_grad_norm)
optimizer.step()
lagrangian_model.clamp_lagrangian_multiplier()
return lagrangian_loss.item(), grad_norm, violate_amount
def decay_learning_rate(optimizer, decay_factor, min_lr):
# decay the learning rate by the factor specified by opt.learning_rate_decay
if decay_factor < 1:
for i, param_group in enumerate(optimizer.param_groups):
old_lr = float(param_group['lr'])
new_lr = old_lr * decay_factor
if new_lr < min_lr:
new_lr = min_lr
if old_lr - new_lr > EPS:
param_group['lr'] = new_lr
logging.info('Learning rate drops to {}'.format(new_lr))