-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotstream_canam4sims.py
executable file
·441 lines (385 loc) · 14.1 KB
/
plotstream_canam4sims.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# plotstream_canam4sims.py
# 2/24/2014
# Streamfunction plots for CanAM4 sea ice simulations
# (taken from plotvert_canam4sims.py)
#
import numpy as np # for array handling
import numpy.ma as ma # masked array
import scipy as sp # scientific python
import scipy.stats
import matplotlib
import matplotlib.pyplot as plt # for basic plotting
import matplotlib.cm as cm
from subprocess import call # for doing system calls - not really needed
from netCDF4 import Dataset
from mpl_toolkits.basemap import Basemap # for maps
import datetime as datetime
import matplotlib.colors as col
import platform as platform
import cccmaplots as cplt
import constants as con
import cccmautils as cutl
import matplotlib.font_manager as fm
# while I'm still creating these modules, have to reload to get changes
cplt = reload(cplt)
con = reload(con)
cutl = reload(cutl)
plt.close("all")
plt.ion()
printtofile=1
model = 'CanAM4'
ftype = 'ts' # timeseries
#ftype = 'climo' # 12-month climatology
climo=0
timeavg = 'SON'
if timeavg in ('DJF','MAM','NDJ','JJA','SON'):
diffcontsn=[-21,-18,-15,-12,-10,-8,-6,-4,-2,-1] # negative
diffcontsp=[0,1,2,4,6,8,10,12,15,18,21] # positive
diffcontsnz=diffcontsn # negative zoom
diffcontspz=diffcontsp # positive zoom
contsn=[-8,-6,-4,-2]
contsp=[0,2,4,6,8,10,12,14,16,18,20]
contsnz=[-5,-4,-3,-2,-1.5,-1,-.5]
contspz=[0,.5,1,1.5,2,3]
# # # ########### set Simulations #############
# Control run
casename = 'kemctl1'
#timstr = '001-061'
timstr = '001-111'
styr = 2 # skip year 1
enyr = 61
# Pert run
casenamep1 = 'kem1pert1' # 2002-2012 sic and sit
casenamep2 = 'kem1pert2' # 2002-2012 sic, sit, adjusted sst
casenamep3 = 'kem1pert3' # 2002-2012 sic, adjusted sst. control sit
#timstrp = '001-061'
timstrp = '001-111'
styrp = 2 # skip year 1
enyrp = 61
cmap = 'RdBu_r'
cmapclimo = 'Spectral_r'
conv = 1 # conversion factor to convert units, etc
# # # ######## set Field info ###############
field = 'zmpsi'
ncfield = 'ZMPSI'
units = '10^10 kg/s' # @@
conv=1/1e10
## cminc = 200
## cmaxc = 310
## cmin = -.5
## cmax = .5
## cminm = -.8 # for monthly
## cmaxm = .8 # for monthly
## cminsc = -2.5 # as Screen et al paper
## cmaxsc = 2.5 # as Screen et al paper
# # # ########## Read NC data ###############
plat = platform.system()
if plat == 'Darwin': # means I'm on my mac
basepath = '/Users/kelly/CCCma/CanSISE/RUNS/'
subdir = '/'
else: # on linux workstation in Vic
basepath = '/home/rkm/work/DATA/' + model + '/'
subdir = '/ts/'
fnamec = basepath + casename + subdir + casename + '_' + field + '_' + timstr + '_' + ftype + '.nc'
fnamep1 = basepath + casenamep1 + subdir + casenamep1 + '_' + field + '_' + timstrp + '_' + ftype + '.nc'
fnamep2 = basepath + casenamep2 + subdir + casenamep2 + '_' + field + '_' + timstrp + '_' + ftype + '.nc'
fnamep3 = basepath + casenamep3 + subdir + casenamep3 + '_' + field + '_' + timstrp + '_' + ftype + '.nc'
# Get the data
ncfilec = Dataset(fnamec,'r') # control
ncfilep1 = Dataset(fnamep1,'r') # pert1
ncfilep2 = Dataset(fnamep2,'r') # pert2
ncfilep3 = Dataset(fnamep3,'r') # pert3
lat = ncfilec.variables['lat'][:]
#lon = ncfilec.variables['lon'][:]
lev = ncfilec.variables['plev'][:]
# time, lev, lat
if ftype == 'ts':
fldc = ncfilec.variables[ncfield][(styr-1)*12:(enyr*12+1),:,:]*conv # time start year to end
fldp1 = ncfilep1.variables[ncfield][(styrp-1)*12:(enyrp*12+1),:,:]*conv # time start year to end
fldp2 = ncfilep2.variables[field.upper()][(styrp-1)*12:(enyrp*12+1),:,:]*conv # time start year to end
fldp3 = ncfilep3.variables[field.upper()][(styrp-1)*12:(enyrp*12+1),:,:]*conv # time start year to end
else:
fldc = ncfilec.variables[ncfield][...]*conv
fldp1 = ncfilep1.variables[ncfield][...]*conv
fldp2 = ncfilep2.variables[ncfield][...]*conv # time start year to end
fldp3 = ncfilep3.variables[ncfield][...]*conv # time start year to end
nt,nlev,nlat = fldc.shape # if nt == 12 then it's a climo
# ############# set which perturbation run! ######
casenamep = casenamep2
fldp = fldp2
# ###############################################
seasfldc = np.squeeze(cutl.seasonalize_monthlyts(fldc,timeavg,climo=climo))
seasfldp = np.squeeze(cutl.seasonalize_monthlyts(fldp,timeavg,climo=climo))
print seasfldc.shape
lats,levs = np.meshgrid(lat,lev)
tstat,pval = sp.stats.ttest_ind(seasfldp,seasfldc,axis=0)
print tstat.shape
print timeavg
pval = ma.masked_invalid(pval) # pcolormesh needs masked_array
# SEASONAL MEAN CLIMO (CONTROL)
plotfld = np.average(seasfldc,0)
fig1 = plt.figure()
ax1 = fig1.add_subplot(111)
CS1 = plt.contour(lats,levs/100,plotfld,contsn,\
colors='k',linestyles='dashed')
plt.clabel(CS1,fmt = '%2.1f',inline=0,fontsize=10)
CS1 = plt.contour(lats,levs/100,plotfld,contsp,\
colors='k',linestyles='solid')
plt.clabel(CS1,fmt = '%2.1f',inline=1,fontsize=10)
ax1.set_xlim(-90,90)
ax1.set_ylim(10,1000)
ax1.invert_yaxis()
ax1.set_yscale('log')
ax1.set_yticks([1000,800, 500, 300, 100, 10])
ax1.set_yticklabels((1000,800,500,300,100,10))
ax1.set_ylabel('Pressure (hPa)')
ax1.set_xlabel('Latitude')
ax1.set_xticks([-45, 0, 45])
ax1.set_xticklabels((-45, 0, 45))
ax1.set_title(ncfield + ' (' + units + ')')
# Zoom on NH: shallow top (200hPa)
fig3 = plt.figure()
ax3 = fig3.add_subplot(111)
CS3 = plt.contour(lats,levs/100,plotfld,\
contsn,\
colors='k',linestyles='dashed')
plt.clabel(CS3,fmt = '%2.1f',inline=0,fontsize=10)
CS3 = plt.contour(lats,levs/100,plotfld,\
contsp,\
colors='k',linestyles='solid')
plt.clabel(CS3,fmt = '%2.1f',inline=1,fontsize=10)
ax3.set_xlim(0,90)
ax3.set_ylim(200,1000)
ax3.invert_yaxis()
ax3.set_yscale('log')
ax3.set_ylabel('Pressure (hPa)')
ax3.set_xlabel('Latitude')
ax3.set_yticks([1000,800, 500, 300, 200])
ax3.set_yticklabels((1000,800,500,300,200))
ax3.set_xticks([0, 30, 60, 80])
ax3.set_xticklabels((0, 30, 60, 80))
ax3.set_title(ncfield + ' (' + units + ')')
if printtofile:
plt.savefig('MMC_' + timeavg + \
'_' + casename + '_NH.pdf')
plt.savefig('MMC_' + timeavg +\
'_' + casename + '_NH.png')
# Zoom on NH HIGH LAT (>30N): shallow top (200hPa)
matplotlib.rcParams['contour.negative_linestyle'] = 'dashed' # @@?? isn't working! s/b default
fig5 = plt.figure()
ax5 = fig5.add_subplot(111)
CS5 = plt.contour(lats,levs/100,plotfld,\
levels=contsnz,\
colors='k',linestyles='dashed')
plt.clabel(CS5,fmt = '%2.1f',inline=0,fontsize=10)
CS5 = plt.contour(lats,levs/100,plotfld,\
levels=contspz,\
colors='k',linestyles='solid')
plt.clabel(CS5,fmt = '%2.2f',inline=1,fontsize=10)
ax5.set_xlim(30,90)
ax5.set_ylim(200,1000)
ax5.invert_yaxis()
ax5.set_yscale('log')
ax5.set_ylabel('Pressure (hPa)')
ax5.set_xlabel('Latitude')
ax5.set_yticks([1000,800, 500, 300, 200])
ax5.set_yticklabels((1000,800,500,300,200))
ax5.set_xticks([30, 60, 80])
ax5.set_xticklabels((30, 60, 80))
ax5.set_title(ncfield + ' (' + units + ')')
if printtofile:
plt.savefig('MMC_' + timeavg + \
'_' + casename + '_NHzoom.pdf')
plt.savefig('MMC_' + timeavg +\
'_' + casename + '_NHzoom.png')
# SEASONAL MEAN DIFF
# full height of atmosphere
plotfld = np.average(seasfldp - seasfldc,0)
plotfld = plotfld*100
units = "10^8 kg/s"
fig = plt.figure()
ax = fig.add_subplot(111)
CS = plt.contour(lats,levs/100,plotfld,diffcontsn,\
colors='k',linestyles='dashed')
plt.clabel(CS,fmt = '%2.1f',inline=0,fontsize=10)
CS = plt.contour(lats,levs/100,plotfld,diffcontsp,\
colors='k',linestyles='solid')
plt.clabel(CS,fmt = '%2.1f',inline=1,fontsize=10)
ax.invert_yaxis()
ax.set_xlim(-90,90)
ax.set_yscale('log')
ax.set_ylabel('Pressure (hPa)')
ax.set_xlabel('Latitude')
ax.set_yticks([1000,800, 500, 300, 100, 10])
ax.set_yticklabels((1000,800,500,300,100,10))
ax.set_xticks([-45, 0, 45])
ax.set_xticklabels((-45, 0, 45))
ax.set_title(ncfield + ' (' + units + ')')
pc = cplt.addtsig(ax,pval,lat,lev/100,type='color')
cb = plt.colorbar(pc)# doesn't work? ,boundaries=(0,.05))
# shallow top (100hPa)
fig2 = plt.figure()
ax2 = fig2.add_subplot(111)
CS2 = plt.contour(lats,levs/100,plotfld,diffcontsn,\
colors='k',linestyles='dashed')
plt.clabel(CS2,fmt = '%2.1f',inline=0,fontsize=10)
CS2 = plt.contour(lats,levs/100,plotfld,diffcontsp,\
colors='k',linestyles='solid')
plt.clabel(CS2,fmt = '%2.1f',inline=1,fontsize=10)
ax2.set_xlim(-90,90)
ax2.set_ylim(100,1000)
ax2.invert_yaxis()
ax2.set_yscale('log')
ax2.set_ylabel('Pressure (hPa)')
ax2.set_xlabel('Latitude')
ax2.set_yticks([1000,800, 500, 300, 100])
ax2.set_yticklabels((1000,800,500,300,100))
ax2.set_xticks([-45, 0, 45])
ax2.set_xticklabels((-45, 0, 45))
ax2.set_title(ncfield + ' (' + units + ')')
cplt.addtsig(ax2,pval,lat,lev/100,type='color')
if printtofile:
plt.savefig('MMCsig_' + timeavg + '_' + casenamep +\
'_v_' + casename + '_shall.pdf')
plt.savefig('MMCsig_' + timeavg + '_' + casenamep +\
'_v_' + casename + '_shall.png')
# Zoom on NH: shallow top (200hPa)
fig4 = plt.figure()
ax4 = fig4.add_subplot(111)
CS4 = plt.contour(lats,levs/100,plotfld,\
diffcontsn,\
colors='k',linestyles='dashed')
plt.clabel(CS4,fmt = '%2.1f',inline=0,fontsize=10)
CS4 = plt.contour(lats,levs/100,plotfld,\
diffcontsp,\
colors='k',linestyles='solid')
plt.clabel(CS4,fmt = '%2.1f',inline=1,fontsize=10)
ax4.set_xlim(0,90)
ax4.set_ylim(200,1000)
ax4.invert_yaxis()
ax4.set_yscale('log')
ax4.set_ylabel('Pressure (hPa)')
ax4.set_xlabel('Latitude')
ax4.set_yticks([1000,800, 500, 300, 200])
ax4.set_yticklabels((1000,800,500,300,200))
ax4.set_xticks([0, 30, 60, 80])
ax4.set_xticklabels((0, 30, 60, 80))
ax4.set_title(ncfield + ' (' + units + ')')
cplt.addtsig(ax4,pval,lat,lev/100,type='color')
if printtofile:
plt.savefig('MMCsig_' + timeavg + '_' + casenamep +\
'_v_' + casename + '_NH.pdf')
plt.savefig('MMCsig_' + timeavg + '_' + casenamep +\
'_v_' + casename + '_NH.png')
# Zoom on NH HIGH LAT (>30N): shallow top (200hPa)
fig6 = plt.figure()
ax6 = fig6.add_subplot(111)
CS6 = plt.contour(lats,levs/100,plotfld,\
diffcontsnz,\
colors='k',linestyles='dashed')
plt.clabel(CS6,fmt = '%2.1f',inline=0,fontsize=10)
CS6 = plt.contour(lats,levs/100,plotfld,\
diffcontspz,\
colors='k',linestyles='solid')
plt.clabel(CS6,fmt = '%2.1f',inline=1,fontsize=10)
ax6.set_xlim(30,90)
ax6.set_ylim(200,1000)
ax6.invert_yaxis()
ax6.set_yscale('log')
ax6.set_ylabel('Pressure (hPa)')
ax6.set_xlabel('Latitude')
ax6.set_yticks([1000,800, 500, 300, 200])
ax6.set_yticklabels((1000,800,500,300,200))
ax6.set_xticks([30, 60, 80])
ax6.set_xticklabels((30, 60, 80))
ax6.set_title(ncfield + ' (' + units + ')')
cplt.addtsig(ax6,pval,lat,lev/100,type='color')
if printtofile:
plt.savefig('MMCsig_' + timeavg + '_' + casenamep +\
'_v_' + casename + '_NHzoom.pdf')
plt.savefig('MMCsig_' + timeavg + '_' + casenamep +\
'_v_' + casename + '_NHzoom.png')
# TODO: zonal mean vprime*tprime
# This eddy heat flux drives the indirect MMC (ferrell)
# zonal mean vprime*uprime
# This eddy momentum flux also drive ferrell
# @@ stat sig on these
# @@ save seasonal figures w/ stat sig. Add TEMP/U?
########################## END #######################@@
# ALL MONTHS
months = con.get_mon()
midx=0
fig4,ax4 = plt.subplots(2,6)
fig4.set_size_inches(12,6)
fig4.subplots_adjust(hspace=.15,wspace=.05)
for ax in ax4.flat:
plotfld = fldpzm[midx,:,:] - fldczm[midx,:,:]
pc = ax.pcolormesh(lats,levs/100,plotfld,\
cmap= plt.cm.get_cmap(cmap),shading='gouraud',\
vmin=cminm,vmax=cmaxm)
ax.set_title(months[midx])
ax.set_xlim(-90,90)
ax.set_ylim(10,1000)
ax.invert_yaxis()
ax.set_yscale('log')
if midx == 0 or midx == 6:
ax.set_ylabel('Pressure (hPa)')
ax.set_yticks([1000,800, 500, 300, 100, 10])
ax.set_yticklabels((1000,800,500,300,100,10))
else:
ax.set_yticklabels('')
if midx in range(6,12):
ax.set_xlabel('Latitude')
ax.set_xticks([-45, 0, 45])
ax.set_xticklabels((-45, 0, 45))
else:
ax.set_xticklabels('')
midx = midx+1
#cbar_ax = fig4.add_axes([.2, .02, .7, .03])
#fig4.colorbar(pc,cax=cbar_ax,orientation='horizontal')
cbar_ax = fig4.add_axes([.91,.15, .02,.7])
fig4.colorbar(pc,cax=cbar_ax)
plt.suptitle(ncfield + ' (' + units + ')')
if printtofile:
plt.savefig(field + 'VERTzm_' + casenamep +\
'_v_' + casename + '_shall_allmos.pdf')
plt.savefig(field + 'VERTzm_' + casenamep +\
'_v_' + casename + '_shall_allmos.png')
# ALL MONTHS As Screen et al 2013, ClimDyn
midx=0
fig5,ax5 = plt.subplots(2,6)
fig5.set_size_inches(12,4.5)
fig5.subplots_adjust(hspace=.15,wspace=.05)
for ax in ax5.flat:
plotfld = fldpzm[midx,:,:] - fldczm[midx,:,:]
pc = ax.pcolormesh(lats,levs/100,plotfld,\
cmap= plt.cm.get_cmap(cmap),shading='gouraud',\
vmin=cminsc,vmax=cmaxsc)
ax.set_title(months[midx])
ax.set_xlim(20,90)
ax.set_ylim(300,1000)
ax.invert_yaxis()
#ax.set_yscale('log')
if midx == 0 or midx == 6:
ax.set_ylabel('Pressure (hPa)')
ax.set_yticks([900,700, 500, 300])
ax.set_yticklabels((900,700,500,300))
else:
ax.set_yticklabels('')
if midx in range(6,12):
ax.set_xlabel('Latitude')
ax.set_xticks([40, 60, 80])
ax.set_xticklabels((40,60,80))
else:
ax.set_xticklabels('')
midx = midx+1
#cbar_ax = fig4.add_axes([.2, .02, .7, .03])
#fig4.colorbar(pc,cax=cbar_ax,orientation='horizontal')
cbar_ax = fig5.add_axes([.91,.15, .02,.7])
fig5.colorbar(pc,cax=cbar_ax)
plt.suptitle(ncfield + ' (' + units + ')')
if printtofile:
plt.savefig(field + 'VERTzm_'+ casenamep +\
'_v_' + casename + '_screen_allmos.pdf')
plt.savefig(field + 'VERTzm_' + casenamep +\
'_v_' + casename + '_screen_allmos.png')