-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcanam4sims_hists.py
executable file
·283 lines (226 loc) · 9.89 KB
/
canam4sims_hists.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# canam4sims_stats.py
# 2/14/2014: taken from plot_canam4sims2.py:
# calculate & plot statistical properties of the runs
#
import numpy as np # for array handling
import scipy as sp # scientific python
import scipy.stats
import matplotlib.pyplot as plt # for basic plotting
import matplotlib.cm as cm
from subprocess import call # for doing system calls - not really needed
from netCDF4 import Dataset
from mpl_toolkits.basemap import Basemap # for maps
import datetime as datetime
import matplotlib.colors as col
import platform as platform
import cccmaplots as cplt # my module
import constants as con # my module
import cccmautils as cutl # my module
import matplotlib.font_manager as fm
# while I'm still creating these modules, have to reload to get changes
cplt = reload(cplt)
con = reload(con)
cutl = reload(cutl)
plt.close("all")
plt.ion()
printtofile=1
model = 'CanAM4'
# # # ########### set Simulations #############
# Control run
casename = 'kemctl1'
timstr = '001-061'
timstr2 = '062-111'
styr = 2 # skip year 1
enyr = 61
# Pert run
casenamep1 = 'kem1pert1' # 2002-2012 sic and sit
casenamep2 = 'kem1pert2' # 2002-2012 sic, sit, adjusted sst
casenamep3 = 'kem1pert3' # 2002-2012 sic, adjusted sst. control sit
timstrp = '001-061'
timstrp2 = '062-111'
styrp = 2 # skip year 1
enyrp = 61
cmap = ''
cmapclimo = 'Spectral_r'
# # # ######## set Field info ###############
## field = 'gt'
## units = 'C'
## conv = 1 # no conversion
## cmin = -2 # for anomaly plots
## cmax = 2 # for anomaly plots
## cminstd = -0.3 # for std anomaly plots
## cmaxstd = 0.3 # for std anomaly plots
## field = 'st'
## xlims = -4,4
## xlimsn = -5,5
field = 'pmsl'
units = 'hPa' # pretty sure hpa @@double check
conv = 1
cmin = -.5 # for anomaly plots
cmax = .5 # for anomaly plots
cminstd = -0.5 # for std anomaly plots
cmaxstd = 0.5 # for std anomaly plots
cminm=-2 # for monthly maps
cmaxm=2 # for monthly maps
## field = 'pcp'
## units = 'mm/day' # original: kg m-2 s-1
## conv = 86400 # convert from kg m-2 s-1 to mm/day
## cmin = -.4 # for anomaly plots
## cmax = .4 # for anomaly plots
## cminstd = -0.2 # for std anomaly plots
## cmaxstd = 0.2 # for std anomaly plots
# # # ########## Read NC data ###############
plat = platform.system()
if plat == 'Darwin': # means I'm on my mac
basepath = '/Users/kelly/CCCma/CanSISE/RUNS/'
subdir = '/'
else: # on linux workstation in Vic
basepath = '/home/rkm/work/DATA/' + model + '/'
subdir = '/ts/'
fnamec = basepath + casename + subdir + casename + '_' + field + '_' + timstr + '_ts.nc'
fnamep1 = basepath + casenamep1 + subdir + casenamep1 + '_' + field + '_' + timstrp + '_ts.nc'
fnamep2 = basepath + casenamep2 + subdir + casenamep2 + '_' + field + '_' + timstrp + '_ts.nc'
fnamep3 = basepath + casenamep3 + subdir + casenamep3 + '_' + field + '_' + timstrp + '_ts.nc'
fnamec2 = basepath + casename + subdir + casename + '_' + field + '_' + timstr2 + '_ts.nc'
fnamep12 = basepath + casenamep1 + subdir + casenamep1 + '_' + field + '_' + timstrp2 + '_ts.nc'
fnamep22 = basepath + casenamep2 + subdir + casenamep2 + '_' + field + '_' + timstrp2 + '_ts.nc'
fnamep32 = basepath + casenamep3 + subdir + casenamep3 + '_' + field + '_' + timstrp2 + '_ts.nc'
# Get the data
ncfilec = Dataset(fnamec,'r') # control
ncfilep1 = Dataset(fnamep1,'r') # pert1
ncfilep2 = Dataset(fnamep2,'r') # pert2
ncfilep3 = Dataset(fnamep3,'r') # pert3
# time period 2
ncfilec2 = Dataset(fnamec2,'r') # control
ncfilep12 = Dataset(fnamep12,'r') # pert1
ncfilep22 = Dataset(fnamep22,'r') # pert2
ncfilep32 = Dataset(fnamep32,'r') # pert3
lat = ncfilec.variables['lat'][:]
lon = ncfilec.variables['lon'][:]
fldc = ncfilec.variables[field.upper()][(styr-1)*12:(enyr*12+1),:,:]*conv # time start year to end
fldc = np.append(fldc, ncfilec2.variables[field.upper()][...]*conv, axis=0)
fldp1 = ncfilep1.variables[field.upper()][(styrp-1)*12:(enyrp*12+1),:,:]*conv # time start year to end
fldp1 = np.append(fldp1,ncfilep12.variables[field.upper()][...]*conv, axis=0)
fldp2 = ncfilep2.variables[field.upper()][(styrp-1)*12:(enyrp*12+1),:,:]*conv # time start year to end
fldp2 = np.append(fldp2,ncfilep22.variables[field.upper()][...]*conv, axis=0)
fldp3 = ncfilep3.variables[field.upper()][(styrp-1)*12:(enyrp*12+1),:,:]*conv # time start year to end
fldp3 = np.append(fldp3,ncfilep32.variables[field.upper()][...]*conv, axis=0)
# annual time-series (3d)
anntsc = cutl.annualize_monthlyts(fldc)
anntsp1 = cutl.annualize_monthlyts(fldp1)
anntsp2 = cutl.annualize_monthlyts(fldp2)
anntsp3 = cutl.annualize_monthlyts(fldp3)
# calc histograms (or pdfs...is there a function?): scipy.stats
# http://docs.scipy.org/doc/scipy/reference/tutorial/stats.html#t-test-and-ks-test
# calc ttest / statistical significance
# calc minimum ensemble size: how does this vary with N
# calc "time to statistical significance" ...same thing?
casenamep = casenamep2
timeavg = 'ANN'
plotfld = anntsp2 - anntsc
cellwgts = cutl.get_cellwgts(lat,lon,repeat=plotfld.shape)
plotfld = plotfld.flatten()
# Histogram: using pyplot hist()
## fig1 = plt.figure()
## plt.hist(plotfld,bins=100,normed=True) # cumulative=True
## # example of transparency
## # plt.hist(uniform_numbers, bins=20, histtype='stepfilled', \
## # normed=True, color='r', alpha=0.5, label='Uniform')
## #plt.title("Gaussian Histogram")
## plt.xlabel(field)
## plt.ylabel("Frequency")
## plt.show()
# Histogram: using Numpy and bar plot
location = "global"
(hist,binedges) = np.histogram(plotfld,bins=100,weights=cellwgts.flatten(),density=True)
widths = np.diff(binedges)
fig2 = plt.figure()
plt.bar(binedges[0:-1],hist/np.sum(hist)*100,width=widths,color='0.75',alpha=0.5)
plt.xlabel(field + " (" + units + ")")
plt.ylabel("% of total")
plt.title(timeavg + " " + casenamep + " - " + casename + " (" + location + ")")
#plt.xlim(xlims)
# @@ should put all perts on here and print to file...
# North Pole (>=60N)
northbnd = 60
location = 'gt' + str(northbnd) + 'N'
plotfld = anntsp2 - anntsc
cellwgts = cutl.get_cellwgts(lat,lon,repeat=plotfld.shape)
plotfld = plotfld[:,lat>=northbnd,:]
cellwgts = cellwgts[:,lat>=northbnd,:]# can't do this b/c weights won't add to 1
plotfld = plotfld.flatten()
(histc,binedgesc) = np.histogram(anntsc[:,lat>=northbnd,:].flatten(),bins=100,density=True)
(histp,binedgesp) = np.histogram(anntsp1[:,lat>=northbnd,:].flatten(),bins=100,density=True)
plt.figure()
plt.bar(binedgesc[0:-1],histc / np.sum(histc) *100,width=np.diff(binedgesc),color='b',alpha=0.5)
plt.bar(binedgesp[0:-1],histp / np.sum(histp) *100,width=np.diff(binedgesp),color='0.75',alpha=0.5)
plt.xlabel(field + " (" + units + ")")
plt.ylabel("% of total")
plt.title(timeavg + " (" + location + ")")
plt.legend((casename,casenamep))
#plt.xlim(xlims)
if printtofile:
plt.savefig(field + 'PDF_' + timeavg + '_' + location + '_' + casenamep + '_' + casename + '.pdf')
plt.savefig(field + 'PDF_' + timeavg + '_' + location + '_' + casenamep + '_' + casename + '.png')
histccum = np.zeros(histc.shape)
histpcum = np.zeros(histp.shape)
for el in np.arange(1,len(histc)+1):
histccum[el-1] = np.sum(histc[0:el])
histpcum[el-1] = np.sum(histp[0:el])
plt.figure()
plt.plot(binedgesc[0:-1],histccum/np.sum(histc),'k')
plt.plot(binedgesp[0:-1],histpcum/np.sum(histp),color='.5')
plt.xlabel(field + " (" + units + ")")
plt.ylabel("Fraction of total")
plt.title("CDF: " + timeavg + " (" + location + ")")
plt.legend((casename,casenamep),loc='lower right')
if printtofile:
plt.savefig(field + 'CDF_' + timeavg + '_' + location + '_' + casenamep + '_' + casename + '.pdf')
plt.savefig(field + 'CDF_' + timeavg + '_' + location + '_' + casenamep + '_' + casename + '.png')
plt.figure()
plt.plot(binedgesc[0:-1],((histpcum/np.sum(histp))-(histccum/np.sum(histc)))*100,'k')
plt.xlabel(field + " (" + units + ")")
plt.ylabel("difference in CDF frac of total (%)")
plt.title("CDF: " + timeavg + " " + location + " (" + casenamep + '-' + casename + ")")
if printtofile:
plt.savefig(field + 'CDFdiff_' + timeavg + '_' + location + '_' + casenamep + '_v_' + casename + '.pdf')
plt.savefig(field + 'CDFdiff_' + timeavg + '_' + location + '_' + casenamep + '_v_' + casename + '.png')
# ######### Put all perts on one hist
plotfld2 = anntsp2 - anntsc
cellwgts = cutl.get_cellwgts(lat,lon,repeat=plotfld2.shape)
plotfld2 = plotfld2[:,lat>=northbnd,:]
cellwgts = cellwgts[:,lat>=northbnd,:]
plotfld2 = plotfld2.flatten()
plotfld1 = anntsp1 - anntsc
plotfld1 = plotfld1[:,lat>=northbnd,:].flatten()
plotfld3 = anntsp3 - anntsc
plotfld3 = plotfld3[:,lat>=northbnd,:].flatten()
(hist2,binedges2) = np.histogram(plotfld2,bins=100,weights=cellwgts.flatten(),density=True)
widths2 = np.diff(binedges2)
(hist1,binedges1) = np.histogram(plotfld1,bins=100,weights=cellwgts.flatten(),density=True)
widths1 = np.diff(binedges1)
(hist3,binedges3) = np.histogram(plotfld3,bins=100,weights=cellwgts.flatten(),density=True)
widths3 = np.diff(binedges3)
fig4 = plt.figure()
plt.bar(binedges1[0:-1],hist1/np.sum(hist1)*100,width=widths1,color='b',alpha=0.5,ec='none')
plt.bar(binedges2[0:-1],hist2/np.sum(hist2)*100,width=widths2,color='0.3',alpha=0.5,ec='none')
plt.bar(binedges3[0:-1],hist3/np.sum(hist3)*100,width=widths3,color='0.7',alpha=0.5,ec='none')
plt.xlabel(field + " (" + units + ")")
plt.ylabel("% of total")
plt.title(timeavg + " All Perts - " + casename + " (" + location + ")")
plt.legend((casenamep1,casenamep2,casenamep3))
#plt.xlim(xlimsn)
plt.show()
if printtofile:
plt.savefig(field + 'PDF_' + timeavg + '_' + location + '_allsims.pdf')
plt.savefig(field + 'PDF_' + timeavg + '_' + location + '_allsims.png')
## # Kernel-Density Estimation (KDE)
## # @@ how to area-weight?
## kernc = sp.stats.gaussian_kde(plotfld)
## fig = plt.figure()
## ax = fig.add_subplot(111)
## ax.plot(plotfld, np.zeros(plotfld.shape), 'b+', ms=20) # rug plot
## x_eval = np.linspace(np.min(plotfld),np.max(plotfld), num=200)
## ax.plot(x_eval, kernc(x_eval), 'k-', label="Scott's Rule")
## plt.title("Note, unweighted!")
## plt.show()