-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcanam4sims_analens.py
2072 lines (1718 loc) · 81.4 KB
/
canam4sims_analens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
canam4sims_analens.py
6/2/2014: taken from canam4sims_stats2.py
This script is specifically for the CanAM4 ensemble runs
(kemctl1r? and kem1pert2r?)
2/20/2014: taken from plot_canam4sims_hists.py:
calculate & plot statistical properties of the runs
"""
import numpy.ma as ma
import scipy.stats
import matplotlib.cm as cm
from subprocess import call # for doing system calls - not really needed
import datetime as datetime
import matplotlib.colors as col
#import platform as platform
import constants as con # my module
import cccmautils as cutl # my module
import matplotlib.font_manager as fm
import copy
import cccmacmaps as ccm
import pandas as pd
# while I'm still creating these modules, have to reload to get changes
cplt = reload(cplt)
con = reload(con)
cutl = reload(cutl)
ccm = reload(ccm)
cnc = reload(cnc)
plt.close("all")
plt.ion()
printtofile=True
plotann=0 # seasonal avg map, comparing ens runs and meanBC
plotallmos=0 # monthly maps (@@ not implemented)
seasonal=0 # seasonal maps (SON, DJF, MAM, JJA)
seasvert=0 # seasonal must =1. seasonal vertical zonal means (SON,DJF,MAM,JJA) instead of maps
screen=True # whether to have screen-style vertical zonal means
plotzonmean=0 # plotzonmean,plotseacyc,pattcorrwithtime are mutually exclusive
plotseacyc=0 # plotzonmean,plotseacyc,pattcorrwithtime are mutually exclusive
seacyclatlim=60 # southern limit for plotting polar mean seasonal cycles (line plot)
withlat=0 # plot the seasonal cycle with latitude dimension too (only for plotseacyc=1)@@for now just std over ens
squatseacyc=0 # plot seacycle figs as shorter than wide
squatterseacyc=1 # even shorter, for paper
pattcorrwithtime=0 # plot pattern correlation with time for each ens member
pattcorryr=0 # if 1, do a yearly anomaly pattern rather than time-integrated
plotregmean=1
region = 'polcap60' # polcap60, polcap65, polcap70, eurasia, ntham, nthatl
testhadisst=0 # check which ens member most similar to hadisst
normbystd=0
halftime=False # get only the first 60yrs. make sure to set the other flag the opp
halftime2=False # get only the last 60yrs. make sure to set the other flag the opp
sensruns=False # sensruns only: addr4ct=1,addsens=1. others=0 no meanBC, r mean, or obs
addobs=1 # add mean of kemhad* & kemnsidc* runs to line plots, seasonal maps.
addr4ct=0 # add kem1pert2r4ct (constant thickness version of ens4)
addsens=0 # add sensitivity runs (kem1pert1b, kem1pert3)
addrcp=1 # add kem1rcp85a simulation (and others if we do more)
simsforpaper=False # meanBC, HAD, NSIDC only. best for maps and zonal mean figs (not line plots)
latlim = None # None #45 # lat limit for NH plots. Set to None otherwise.
levlim= 100 # level limit for vertical ZM plots (in hPa). ignored if screen=True
sigtype = 'cont' # significance: 'cont' or 'hatch' which is default
sigoff=0 # if 1, don't add significance
siglevel=0.05
# # # ######## set Field info ###################
# gz, t, u, v, q (3D !)
# st, sic, sicn (sia), gt, pmsl, pcp, hfl, hfs, turb, net, flg, fsg, fn, pcpn, zn, su, sv (@@later ufs,vfs)
field = 'st'
print field
timeavg = 'DJF'
# only for threed vars
#level = 30000
level = 50000 # 500hPa
#level = 70000
nonstandardlev=False # standards are 700,500,300
seasons = 'SON','DJF','MAM','JJA'
model = 'CanAM4'
threed=0
sia=0 # is the requested field sea ice area
ctstr=''
# # # ########### set Simulations #############
# Control run
bcasename = 'kemctl1'
casename = bcasename + 'ens'
timstr = '001-121'
timesel = '0002-01-01,0121-12-31'
bcasenamep = 'kem1pert2'
casenamep = bcasenamep + 'ens'
timstrp = '001-121'
# ######### set second set of sims (mean BC) ##########
casename2 = 'kemctl1'
casenamep2 = 'kem1pert2'
timstr2='001-121'
if halftime:
timesel= '0002-01-01,0061-12-31'
elif halftime2:
timesel='0062-01-01,0121-12-31'
if sensruns:
addobs=0
addr4ct=1
addsens=1
addrcp=0
# but don't plot the meanBC or mean of Ens members
# HERE THE SECOND SET OF RUNS IS HadISST BC's
if testhadisst:
casename2 = 'kemhadctl'
casenamep2 = 'kemhadpert'
timstr2=timstr
field='sicn'
cmap = 'blue2red_w20' # default cmap
cmapclimo = 'Spectral_r'
pct = 0 # if 1, do calculation as a percent
# # # ###########################################
# Shouldn't have to mod below....
""" plev = 100, 200, 300, 500, 700, 1000, 2000, 3000, 5000, 7000, 10000, 12500,
15000, 17500, 20000, 22500, 25000, 30000, 35000, 40000, 45000, 50000,
55000, 60000, 65000, 70000, 75000, 77500, 80000, 82500, 85000, 87500,
90000, 92500, 95000, 97500, 100000 ;
"""
if field == 'st':
units = 'K'
conv = 1 # no conversion
cmin = -2; cmax = 2 # for anomaly plots
cminp=-.5; cmaxp=.5 # for when pert is 'ctl'
cminm = -3; cmaxm = 3 # monthly
## print 'small clim!'
## cmin = -1; cmax = 1 for anomaly plots
## cminm = -1.5; cmaxm = 1.5 monthly
cminmp = -1; cmaxmp = 1 # for when pert is 'ctl'
cminn = -5; cmaxn = 5 # for norm by std
cmap = 'blue2red_w20'
if plotseacyc==1 and withlat==1:
cminm=-.5; cmaxm=.5 # @@ will have to update this when add subplots
leglocs = 'upper left', 'upper left', 'upper right', 'upper left'
seacycylim=(-.5,4) # >70N
elif field == 'sic':
units='m'
conv=1/913.
cmin=-.5
cmax=.5
cminm=-.5
cmaxm=.5
cmap = 'red2blue_w20'
leglocs = 'lower left', 'lower left', 'upper left', 'upper left'
elif field == 'sicn' or field == 'sia':
units = 'frac'
conv=1
cmin=-.15; cmax=.15
cminm=-.15; cmaxm=.15
cmap = 'red2blue_w20'
leglocs = 'lower left', 'lower left', 'upper left', 'upper left'
seacycylim=(-2e12,0) # for sia
elif field == 'gt':
units='K'
conv=1
cmin=-2; cmax=2
cminm=-3; cmaxm=3
cminp=-.5; cmaxp=.5 # for when pert is 'ctl'
cminmp = -1; cmaxmp = 1 # for when pert is 'ctl'
cmap = 'blue2red_w20'
elif field == 'pmsl':
units = 'hPa' # pretty sure hpa @@double check
conv = 1
cmin = -1; cmax = 1 # for anomaly plots
cminm=-2; cmaxm=2 # for monthly maps
cminp=cmin; cmaxp=cmax # for when pert is 'ctl'
cminmp=cminm; cmaxmp=cmaxm
cmap = 'blue2red_20'
## print 'new cmap and small clim! @@ '
## cmap = 'blue2red_w20'
## cminm=-1; cmaxm=1 for monthly maps, small clim
cminn = -1; cmaxn = 1 # for norm by std
if plotseacyc==1 and withlat==1:
cminm=-1; cmaxm=1 # @@ will have to update this when add subplots
leglocs = 'lower left', 'lower left', 'upper center', 'lower left'
seacycylim=(-2,1.5) # >70N
elif field == 'pcp':
units = 'mm/day' # original: kg m-2 s-1
#pct=1; units = '%'; print 'PCT'
conv = 86400 # convert from kg m-2 s-1 to mm/day
cmin = -.2; cmax = .2 # for anomaly plots
cminp=-.15; cmaxp=.15
cminm = -.2; cmaxm = .2
## print '@@ big clim!'
## cmin = -.75; cmax = .75
## cminm = -.75; cmaxm = .75
## print '@@ medium clim!'
## cmin = -.5; cmax = .5
## cminm = -.5; cmaxm = .5
#cmap = 'PuOr'
cmap = 'brown2blue_16w'
cminpct=-12; cmaxpct=12
cminmpct=-20; cmaxmpct=20
cminmp =-.25; cmaxmp=.25
cminpctp=-8; cmaxpctp=8
cminpctmp=-12; cmaxpctmp=12
leglocs = 'upper left', 'upper left', 'upper left', 'upper left'
elif field == 'hfl': # sfc upward LH flux
units = 'W/m2'
conv = 1
cmin = -5
cmax = 5
cminm = -8
cmaxm = 8
elif field == 'hfs': # sfc upward SH flux
units = 'W/m2'
conv = 1
cmin = -5
cmax = 5
cminm = -8
cmaxm = 8
elif field == 'turb': # combine hfl and hfs
units = 'W/m2'
conv=1
cmin=-10
cmax=10
cminm = -20
cmaxm = 20
cmap='blue2red_20'
elif field == 'net': # net of all sfc fluxes
#print " 'net ' not yet implemented! @@"
units = 'W/m2'
conv=1
cmin=-10
cmax=10
cminm = -20
cmaxm = 20
cmap='blue2red_20'
leglocs = 'upper left', 'upper left', 'upper left', 'upper left'
seacycylim=(-5,25) # always >40N (where there is ice in CTL)
elif field == 'flg': # net downward LW at the sfc.
units = 'W/m2'
conv = -1 # so positive heats atmos
cmin = -5
cmax = 5
cminm = -8
cmaxm = 8
leglocs = 'upper left', 'lower left', 'upper left', 'upper left'
elif field == 'fsg': # net (absorbed) solar downard at sfc
units = 'W/m2'
conv = 1
cmin = -5
cmax = 5
cminm = -8
cmaxm = 8
elif field == 'fn': # snow fraction
units = '%'
conv=100
cmin = -5
cmax = 5
cminm = -5
cmaxm = 5
cmap = 'red2blue_w20'
elif field == 'pcpn': # snowfall rate (water equivalent, kg/m2/s)
#pct = 1; units='%'
units = 'mm/day'
conv = 86400 # convert from kg m-2 s-1 to mm/day (I think it's same as pcp) @@
cmap = 'brown2blue_16w'
cmin = -.1 # for anomaly plots
cmax = .1 # for anomaly plots
cminm = -.15
cmaxm = .15
cminpct=-12
cmaxpct=12
cminmpct=-25
cmaxmpct=25
leglocs = 'upper left', 'upper left', 'upper center', 'upper left'
elif field == 'zn': # snow depth (m)
# pct=1; units='%'
units = 'cm'
conv = 100; # convert to cm
cmap = 'brown2blue_16w'
cmin = -2
cmax = 2
cminm = -2.5; cmaxm = 2.5
cminpct=-10
cmaxpct=10
cminmpct=-10
cmaxmpct=10
leglocs = 'upper right', 'lower left', 'upper right', 'lower right'
elif field == 'su':
units = 'm/s'
conv = 1;
cmap = 'blue2red_20'
cmin = -1; cmax = 1
cminm = -1; cmaxm = 1
cminp = -.5; cmaxp=.5
cminmp = -.5; cmaxmp=.5
leglocs = 'upper left', 'lower left', 'upper left', 'upper left'
elif field == 'sv':
units = 'm/s'
conv = 1;
cmap = 'blue2red_20'
cmin = -.5
cmax = .5
cminm = -.5
cmaxm = .5
elif field == 't':
threed = 1
conv=1
ncfield = 'TEMP'
units = 'K' # @@
## if level == 30000:
## cminc = 215; cmaxc = 245
## elif level == 70000:
## cminc = 245; cmaxc = 285
if level == 30000:
cmin = -.3; cmax = .3
cminm = -.5; cmaxm = .5 # for monthly
#cminsea = -.5; cmaxsea = .5
elif level == 70000:
cmin = -.3; cmax = .3
cminm = -.5; cmaxm = .5 # for monthly
#cminsea = -.5; cmaxsea = .5
if seasvert:
if screen:
cmin=-2.5; cmax=2.5
cminm=-2.5; cmaxm=2.5
else:
cmin = -.5; cmax = .5
cminm = -.8; cmaxm = .8
elif field == 'u':
threed = 1
conv=1
ncfield = 'U'
units = 'm/s' #@@
## if level==50000:
## cminc=-25; cmaxc=25
## elif level==70000:
## cminc=-15; cmaxc=15
## elif level == 30000:
## cminc=-40; cmaxc=40
if level == 30000:
cmin = -2; cmax = 2
cminm = -3; cmaxm = 3
#cminsea = -3; cmaxsea = 3
else:
cmin = -1; cmax = 1
cminm = -1; cmaxm = 1
#cminsea = -1; cmaxsea = 1
if seasvert:
cmin=-.5; cmax=.5
cminm=-1; cmaxm=1
#cmapclimo='blue2red_20'
elif field == 'gz':
threed=1
ncfield = 'PHI'
units = 'm' # @@
conv = 1/con.get_g()
## if level==50000:
## cminc = 5200; cmaxc = 5900 # climo 500hPa
## elif level==70000:
## cminc=2800; cmaxc = 3200
## elif level==30000:
## cminc=8600; cmaxc = 9800
## elif level==100000: # use this for thickness calc 1000-700
## cminc=2650; cmaxc = 3050
cmin = -8 # annual mean
cmax = 8 # annual mean
if level==30000:
cmin = -15; cmax = 15
#cminsea=-20; cmaxsea = 20
cminm = -20; cmaxm = 20 # for monthly
else:
#cminsea = -15; cmaxsea = 15
cminm = -15; cmaxm = 15 # for monthly
seacycylim=(-16,20) # >70N, 500hPa
if seasvert:
if screen:
cmin=-10; cmax=10
cminm=-25; cmaxm=25
else:
cmin = -10; cmax = 10
cminm = -15; cmaxm = 15
else:
print 'No settings for ' + field
fluxes = 'hfl','hfs','flg' # LH, SH, LWdown
# # # ########## Read NC data ###############
bp=con.get_basepath()
basepath=bp['basepath'] + model + '/'; subdir=bp['subdir']
# set filename for getting lat,lon
if threed==1: # either map of a level, or a zonal mean
if seasonal==1 and seasvert==1:
fieldstr=field+'ZM'
field=field+'ZM'
#fnamec = basepath + casename + subdir + casename + '_' + field + '_' + timstr + '_ts.nc' # for lat,lon,plev
else:
fieldstr=field+str(level/100) # figure names. want integer for string
field=field+str(level) # read in files
#fnamec = basepath + casename + subdir + casename + '_' + field + '_001-061_ts.nc' # for lat,lon
fnamec = basepath + casename + subdir + casename + '_' + field + '_' + timstr + '_ts.nc' # for lat,lon
else:
fieldstr=field
if field == 'sia':
sia=1
field='sicn' # only really sia for zonal mean and seasonal cycle
fnamec = basepath + casename + subdir + casename + '_' + field + '_' + timstr + '_ts.nc'
if sia==1:
field='sia'
if field in ('turb','net'): # just for lat/lon
fnamec = basepath + casename + subdir + casename + '_flg_' + timstr + '_ts.nc'
lat = cnc.getNCvar(fnamec,'lat')
lon = cnc.getNCvar(fnamec,'lon')
if threed:
lev=cnc.getNCvar(fnamec,'plev')
nlev=len(lev)
nlat = len(lat)
nlon = len(lon)
if sigtype=='cont' or sigoff==1:
suff='pdf'
else:
suff='png'
if simsforpaper:
sims = 'kemhad','kemnsidc',''
ctstr = '_forpap'
addobs=0
addr4ct=0
addsens=0
addrcp=0
seasons = ('SON','DJF')
else:
# order ens simulations in order of most ice loss in melt season to least.
# Then ens mean, PERT2, observations if requested
sims = 'r1','r4','r3','r5','r2','ens','' # suffixes to bcasename and bcasenamep
if addobs:
sims = sims + ('kemhad','kemnsidc')
if sensruns: # add sensitivity runs. don't plot meanBC, mean of ens
sims = sims[0:5] + ('r4ct','kem1pert1b','kem1pert3')
ctstr = '_sensruns'
else:
if addr4ct:
sims = sims + ('r4ct',)
ctstr = '_r4ct' # for figure filenames
if addsens:
sims = sims + ('kem1pert1b','kem1pert3') # control is kemctl1 (or '' key)
ctstr = ctstr + 'sens'
if addrcp:
sims = sims + ('kem1rcp85a',) # control is kemctl1
ctstr = ctstr + 'rcpa'
if halftime:
ctstr = ctstr + '_60yrs' # @@
elif halftime2:
ctstr = ctstr + '_60yrs2' # @@
print sims
#ensmems=np.arange(0,5)
if plotann:
if field=='turb':
print 'not fully implemented! @@, no second set of sims'
field='hfl'; fieldb='hfs'
fnamec = basepath + casename + subdir + casename + '_' + field + '_' + timstr + '_ts.nc'
fnamep = basepath + casenamep + subdir + casenamep + '_' + field + '_' + timstrp + '_ts.nc'
fnamecb = basepath + casename + subdir + casename + '_' + fieldb + '_' + timstr + '_ts.nc'
fnamepb = basepath + casenamep + subdir + casenamep + '_' + fieldb + '_' + timstrp + '_ts.nc'
fldc = cnc.getNCvar(fnamec,field.upper(),timesel=timesel)*conv + \
cnc.getNCvar(fnamecb,fieldb.upper(),timesel=timesel)*conv
fldp = cnc.getNCvar(fnamep,field.upper(),timesel=timesel)*conv+ \
cnc.getNCvar(fnamepb,fieldb.upper(),timesel=timesel)*conv
field='turb'
else:
if threed==0:
if field == 'sia':
sia=1
field='sicn' # only really sia for zonal mean and seasonal cycle
# get ensemble mean
fnamec = basepath + casename + subdir + casename + '_' + field + '_' + timstr + '_ts.nc'
fnamep = basepath + casenamep + subdir + casenamep + '_' + field + '_' + timstrp + '_ts.nc'
fldc = cnc.getNCvar(fnamec,field.upper(),timesel=timesel)*conv
fldp = cnc.getNCvar(fnamep,field.upper(),timesel=timesel)*conv
# get original runs (mean BC)
fnamec2 = basepath + casename2 + subdir + casename2 + '_' + field + '_' + timstr2 + '_ts.nc'
fnamep2 = basepath + casenamep2 + subdir + casenamep2 + '_' + field + '_' + timstr2 + '_ts.nc'
fldc2 = cnc.getNCvar(fnamec2,field.upper(),timesel=timesel)*conv
fldp2 = cnc.getNCvar(fnamep2,field.upper(),timesel=timesel)*conv
if sia==1:
field='sia'
else: # is threed
# get ensemble mean
if nonstandardlev: # leave this in in case want a different level, not tested w/ 3D zonal mean
# read 3D variables at specified level, 2 timeseries files
frootc = basepath + casename + subdir + casename + '_' + field + '_'
frootp = basepath + casenamep + subdir + casenamep + '_' + field + '_'
fnamec = frootc + '001-061_ts.nc'
fldc = np.append(cnc.getNCvar(fnamec,ncfield,
timesel='0002-01-01,061-12-31',levsel=level)*conv,
cnc.getNCvar(frootc+'062-121_ts.nc',ncfield,levsel=level)*conv,
axis=0)
fldp = np.append(cnc.getNCvar(frootp+'001-061_ts.nc',ncfield,
timesel='0002-01-01,061-12-31',levsel=level)*conv,
cnc.getNCvar(frootp+'062-121_ts.nc',ncfield,levsel=level)*conv,
axis=0)
# get original runs (mean BC)
frootc2 = basepath + casename2 + subdir + casename2 + '_' + field + '_'
frootp2 = basepath + casenamep2 + subdir + casenamep2 + '_' + field + '_'
fldc2 = np.append(cnc.getNCvar(frootc2+'001-061_ts.nc',ncfield,
timesel='0002-01-01,061-12-31',levsel=level)*conv,
cnc.getNCvar(frootc2+'062-121_ts.nc',ncfield,levsel=level)*conv,
axis=0)
fldp2 = np.append(cnc.getNCvar(frootp2+'001-061_ts.nc',ncfield,
timesel='0002-01-01,061-12-31',levsel=level)*conv,
cnc.getNCvar(frootp2+'062-121_ts.nc',ncfield,levsel=level)*conv,
axis=0)
else: # read in a standard level from processed file (default) @@reorg since same as above almost
fnamec = basepath + casename + subdir + casename + '_' + field + '_' + timstr + '_ts.nc'
fnamep = basepath + casenamep + subdir + casenamep + '_' + field + '_' + timstrp + '_ts.nc'
fldc = cnc.getNCvar(fnamec,ncfield,timesel=timesel)*conv
fldp = cnc.getNCvar(fnamep,ncfield,timesel=timesel)*conv
# get original runs (mean BC)
fnamec2 = basepath + casename2 + subdir + casename2 + '_' + field + '_' + timstr2 + '_ts.nc'
fnamep2 = basepath + casenamep2 + subdir + casenamep2 + '_' + field + '_' + timstr2 + '_ts.nc'
fldc2 = cnc.getNCvar(fnamec2,ncfield,timesel=timesel)*conv
fldp2 = cnc.getNCvar(fnamep2,ncfield,timesel=timesel)*conv
# annual time-series (3d)
seastsc = cutl.seasonalize_monthlyts(fldc,timeavg)
seastsp = cutl.seasonalize_monthlyts(fldp,timeavg)
nt,nlev,nlat = seastsc.shape # @@the var names are "wrong" but work fine in the script as written
tstat,pval = sp.stats.ttest_ind(seastsp,seastsc,axis=0)
seastdc = np.std(seastsc,axis=0)
seastdp = np.std(seastsp,axis=0)
seastsc2 = cutl.seasonalize_monthlyts(fldc2,timeavg)
seastsp2 = cutl.seasonalize_monthlyts(fldp2,timeavg)
nt2,nlev,nlat = seastsc.shape # @@the var names are "wrong" but work fine in the script as written
tstat2,pval2 = sp.stats.ttest_ind(seastsp2,seastsc2,axis=0)
seastdc2 = np.std(seastsc2,axis=0)
seastdp2 = np.std(seastsp2,axis=0)
#tstatb,pvalb = sp.stats.ttest_ind(anntsp,anntsc,axis=0,equal_var=False) # basically the same as above
# Note that NaN is returned for zero variance (I think..from googling..)
# If that is the case, pcolormesh() needs a masked_array rather than ndarray (??)
# : http://stackoverflow.com/questions/7778343/pcolormesh-with-missing-values
#if plotann: @@ moving this might require defining some things again...test...6/17
print timeavg
if field=='sia':
print 'Plotting maps of SICN instead of sia'
field='sicn'
if pct:
seastsctm = np.mean(seastsc,0)
seastsctm = ma.masked_where(seastsctm<=0.01,seastsctm)
plotfld = np.mean(seastsp-seastsc,0) / seastsctm * 100
seastsctm2 = np.mean(seastsc2,0)
seastsctm2 = ma.masked_where(seastsctm2<=0.01,seastsctm2)
plotfld2 = np.mean(seastsp2-seastsc2,0) / seastsctm2 * 100
cmin=cminpct
cmax=cmaxpct
else:
if normbystd:
plotfld = (np.mean(seastsp,0)-np.mean(seastsc,0))/seastdc
plotfld2 = (np.mean(seastsp2,0)-np.mean(seastsc2,0))/seastdc2
cmin=cminn; cmax=cmaxn
sigoff=1
else:
plotfld = np.mean(seastsp,0)-np.mean(seastsc,0)
plotfld2 = np.mean(seastsp2,0)-np.mean(seastsc2,0)
# Plot mean of ens runs, the meanBC run, and their difference
fig1,ax1 = plt.subplots(1,3)
ax = ax1[0]
bm,pc = cplt.kemmap(plotfld,lat,lon,cmin=cmin,cmax=cmax,cmap=cmap,type='nh',\
title='ens',units=units,axis=ax,suppcb=1)
if sigoff==0:
cplt.addtsigm(bm,pval,lat,lon,type=sigtype) # add significance info (hatching. for contour, type='contour')
ax = ax1[1]
bm,pc = cplt.kemmap(plotfld2,lat,lon,cmin=cmin,cmax=cmax,cmap=cmap,type='nh',\
title=casenamep2 + '-' + casename2,units=units,axis=ax,suppcb=1)
if sigoff==0:
cplt.addtsigm(bm,pval2,lat,lon,type=sigtype)
ax = ax1[2]
bm,pc = cplt.kemmap(plotfld-plotfld2,lat,lon,cmin=cmin,cmax=cmax,cmap=cmap,type='nh',\
title='ens-meanBC',units=units,axis=ax,suppcb=1)
if sigoff==0:
tstattmp,pvaltmp = sp.stats.ttest_ind(seastsp-seastsc,seastsp2-seastsc2,axis=0)
cplt.addtsigm(bm,pvaltmp,lat,lon,type=sigtype)
cbar_ax = fig1.add_axes([.91,.25, .02,.5])
fig1.colorbar(pc,cax=cbar_ax) # or do bm.colorbar....
plt.suptitle(timeavg + ': ' + fieldstr)
if printtofile:
if sigoff==0:
sigstr='sig' + sigtype
else:
if normbystd:
sigstr='norm'
else:
sigstr=''
if pct:
fig1.savefig(fieldstr + 'pctdiff' + sigstr + '_ens_v_meanBC_' + timeavg + '_nh.' + suff )
else:
fig1.savefig(fieldstr + 'diff' + sigstr + '_ens_v_meanBC_' + timeavg + '_nh.' + suff)
# ==================================================
# do a subplot with each ens member, plus the mean
ridx=0
fig,spax = plt.subplots(2,3)
for ax in spax.flat:
if ridx==len(spax.flat)-1: # last spot is for the ens mean
if threed==0:
fnamec = basepath + bcasename + 'ens' + subdir + bcasename +\
'ens_' + field + '_' + timstr + '_ts.nc'
fnamep = basepath + bcasenamep + 'ens' + subdir + bcasenamep +\
'ens_' + field + '_' + timstrp + '_ts.nc'
seasfldc = cnc.getNCvar(fnamec,field.upper(),timesel=timesel,seas=timeavg)*conv
seasfldp = cnc.getNCvar(fnamep,field.upper(),timesel=timesel,seas=timeavg)*conv
else:
# read 3D variables at specified level, 2 timeseries files
if nonstandardlev:
frootc = basepath + bcasename + 'ens' + subdir + bcasename + 'ens_' + field + '_'
frootp = basepath + bcasenamep + 'ens' + subdir + bcasenamep + 'ens_' + field + '_'
fnamec = frootc + '001-061_ts.nc'
seasfldc = np.append(cnc.getNCvar(fnamec,ncfield,
timesel='0002-01-01,061-12-31',levsel=level,seas=timeavg)*conv,
cnc.getNCvar(frootc+'062-121_ts.nc',ncfield,levsel=level,seas=timeavg)*conv,
axis=0)
seasfldp = np.append(cnc.getNCvar(frootp+'001-061_ts.nc',ncfield,
timesel='0002-01-01,061-12-31',levsel=level,seas=timeavg)*conv,
cnc.getNCvar(frootp+'062-121_ts.nc',ncfield,levsel=level,seas=timeavg)*conv,
axis=0)
else: # read from already processed file (default). @@ should reorg b/c this is almost same as above
fnamec = basepath + bcasename + 'ens' + subdir + bcasename +\
'ens_' + field + '_' + timstr + '_ts.nc'
fnamep = basepath + bcasenamep + 'ens' + subdir + bcasenamep +\
'ens_' + field + '_' + timstrp + '_ts.nc'
seasfldc = cnc.getNCvar(fnamec,ncfield,timesel=timesel,seas=timeavg)*conv
seasfldp = cnc.getNCvar(fnamep,ncfield,timesel=timesel,seas=timeavg)*conv
ttl = 'ens'
else:
if threed==0:
fnamec = basepath + bcasename + 'r' + str(ridx+1) + subdir + bcasename +\
'r' + str(ridx+1) + '_' + field + '_' + timstr + '_ts.nc'
fnamep = basepath + bcasenamep + 'r' + str(ridx+1) + subdir + bcasenamep +\
'r' + str(ridx+1) + '_' + field + '_' + timstrp + '_ts.nc'
seasfldc = cnc.getNCvar(fnamec,field.upper(),timesel=timesel,seas=timeavg)*conv
seasfldp = cnc.getNCvar(fnamep,field.upper(),timesel=timesel,seas=timeavg)*conv
else:
if nonstandardlev:
frootc = basepath + bcasename + 'r' + str(ridx+1) + subdir + bcasename +\
'r' + str(ridx+1) + '_' + field + '_'
frootp = basepath + bcasenamep + 'r' + str(ridx+1) + subdir + bcasenamep +\
'r' + str(ridx+1) + '_' + field + '_'
fnamec = frootc + '001-061_ts.nc'
seasfldc = np.append(cnc.getNCvar(fnamec,ncfield,
timesel='0002-01-01,061-12-31',levsel=level,seas=timeavg)*conv,
cnc.getNCvar(frootc+'062-121_ts.nc',ncfield,levsel=level,seas=timeavg)*conv,
axis=0)
seasfldp = np.append(cnc.getNCvar(frootp+'001-061_ts.nc',ncfield,
timesel='0002-01-01,061-12-31',levsel=level,seas=timeavg)*conv,
cnc.getNCvar(frootp+'062-121_ts.nc',ncfield,levsel=level,seas=timeavg)*conv,
axis=0)
else:
fnamec = basepath + bcasename + 'r' + str(ridx+1) + subdir + bcasename +\
'r' + str(ridx+1) + '_' + field + '_' + timstr + '_ts.nc'
fnamep = basepath + bcasenamep + 'r' + str(ridx+1) + subdir + bcasenamep +\
'r' + str(ridx+1) + '_' + field + '_' + timstrp + '_ts.nc'
seasfldc = cnc.getNCvar(fnamec,ncfield,timesel=timesel,seas=timeavg)*conv
seasfldp = cnc.getNCvar(fnamep,ncfield,timesel=timesel,seas=timeavg)*conv
ttl = 'r' + str(ridx+1)
seastdc = np.std(seasfldc,axis=0)
seastdp = np.std(seasfldp,axis=0)
tstat,pval = sp.stats.ttest_ind(seasfldp,seasfldc,axis=0)
plotfld = np.mean(seasfldp,axis=0)-np.mean(seasfldc,axis=0)
if normbystd:
plotfld = plotfld/seastdc
cmin=cminn; cmax=cmaxn
sigoff=1
bm,pc = cplt.kemmap(plotfld,lat,lon,cmin=cmin,cmax=cmax,cmap=cmap,type='nh',\
title=ttl,units=units,axis=ax,suppcb=1)
if sigoff==0:
cplt.addtsigm(bm,pval,lat,lon,type=sigtype)
ridx = ridx+1
cbar_ax = fig.add_axes([.91,.25, .02,.5])
fig.colorbar(pc,cax=cbar_ax) # or do bm.colorbar....
plt.suptitle(timeavg + ': ' + fieldstr)
if printtofile:
if sigoff==0:
sigstr='sig' + sigtype
else:
if normbystd:
sigstr='norm'
else:
sigstr=''
if pct:
fig.savefig(fieldstr + 'pctdiff' + sigstr + '_enssubplot_' + timeavg + '_nh.' + suff )
else:
fig.savefig(fieldstr + 'diff' + sigstr + '_enssubplot_' + timeavg + '_nh.' + suff)
# end plotann
#sigs = np.ones((12,fldc.shape[1],fldc.shape[2])) unused
if addobs:
obsstr = 'obs' #'had' # for figure file name
else:
obsstr = ''
months=con.get_mon()
if plotallmos:
print 'plotallmos not implemented'
## title = field + ": " + casenamep + "-" + casename
## midx=0
## fig, spax = plt.subplots(2,6)
## #fig.set_size_inches(12,6)
## fig.set_size_inches(12,4.5)
## fig.subplots_adjust(hspace=0,wspace=0)
## for ax in spax.flat:
## monfldc = fldc[midx::12,:,:]
## monfldp = fldp[midx::12,:,:]
## tstat,pval = sp.stats.ttest_ind(monfldp,monfldc,axis=0)
## sigs[midx,:,:] = ma.masked_where(pval>0.05,pval)
## if pct:
## monfldctm = np.mean(monfldc,0)
## monfldctm = ma.masked_where(monfldctm<=0.01,monfldctm)
## plotfld = np.mean(monfldp-monfldc,0) / monfldctm *100
## cminm=cminmpct
## cmaxm=cmaxmpct
## else:
## plotfld = np.mean(monfldp,0)-np.mean(monfldc,0)
## bm,pc = cplt.kemmap(plotfld,lat,lon,cmin=cminm,cmax=cmaxm,cmap=cmap,type='nh',\
## title=months[midx],axis=ax,suppcb=1)
## ax.set_title(months[midx])
## cplt.addtsigm(bm,pval,lat,lon,type=sigtype)
## midx = midx+1
## cbar_ax = fig.add_axes([.91,.25, .02,.5])
## fig.colorbar(pc,cax=cbar_ax) # or do bm.colorbar....
## plt.suptitle(title)
## if printtofile:
## if pct:
## fig.savefig(field + 'pctdiffsig' + sigtype + '_' + casenamep +\
## '_v_' + casename + '_allmos_nh.' + suff)
## else:
## fig.savefig(field + 'diffsig' + sigtype + '_' + casenamep +\
## '_v_' + casename + '_allmos_nh.' + suff)
# done with if plotallmos
if seasonal:
if field=='sia':
print 'Plotting maps of SICN instead of sia'
field='sicn'
cmlen=float( plt.cm.get_cmap(cmap).N) # or: from __future__ import division
if seasvert:
tstat = np.zeros((len(seasons),nlev,nlat))
pval = np.zeros((len(seasons),nlev,nlat))
fldcallseas = np.zeros((len(seasons),nlev,nlat))
fldpallseas = np.zeros((len(seasons),nlev,nlat))
else:
tstat = np.zeros((len(seasons),nlat,nlon))
pval = np.zeros((len(seasons),nlat,nlon))
fldcallseas = np.zeros((len(seasons),nlat,nlon))
fldpallseas = np.zeros((len(seasons),nlat,nlon))
incr = (cmaxm-cminm) / (cmlen)
conts = np.arange(cminm,cmaxm+incr,incr)
fig6,ax6 = plt.subplots(len(seasons),len(sims)) # 1 row for e/ of 5 ens members, plus mean, plus meanBC
fig6.set_size_inches(12,8)
fig6.subplots_adjust(hspace=.15,wspace=.05)
lastcol=len(sims)-1
for ridx,sim in enumerate(sims): # traverse cols
cidx=0
if sim in ('kemhad','kemnsidc'):
frootc = basepath + sim + 'ctl' + subdir + sim + 'ctl' + '_' + field + '_'
frootp = basepath + sim + 'pert' + subdir + sim + 'pert' + '_' + field + '_'
if sim=='kemhad':
rowl='had'
else:
rowl='nsidc'
elif sim in ('kem1pert1b','kem1pert3','kemrcp85'):
frootc = basepath + 'kemctl1' + subdir + 'kemctl1' + '_' + field + '_'
frootp = basepath + sim + subdir + sim + '_' + field + '_'
if sim=='kem1pert1b':
rowl='nosst'
elif sim=='kem1pert3':
rowl='nosit'
else:
rowl='rcp85a'
else:
frootc = basepath + bcasename + sim + subdir + bcasename + sim + '_' + field + '_'
frootp = basepath + bcasenamep + sim + subdir + bcasenamep + sim + '_' + field + '_'
rowl=sim
fnamec = frootc + timstr + '_ts.nc'
fnamep = frootp + timstrp + '_ts.nc'
# @@@ I *think* I don't need this anymore since processing the 3D files more
# @@ although getting a nonstandard lev is not supported
if nonstandardlev:
print 'not yet supported for seasonal'
## if threed==0:
## fnamec = frootc + timstr + '_ts.nc'
## fnamep = frootp + timstrp + '_ts.nc'
## else:
## print '@@ fix to use the level NC files'
## fnamec = frootc + '001-061_ts.nc'
## fnamec2 = frootc + '062-121_ts.nc'
## fnamep = frootp + '001-061_ts.nc'
## fnamep2 = frootp + '062-121_ts.nc'
for sea in seasons: # traverse rows (or use map_allseas() ?? @@)
#ax = ax6[ridx][cidx]
ax = ax6[cidx][ridx] # swapped row and col index positions in subplot
if field=='turb':
field='hfl'; fieldb='hfs'
fldcsea = cnc.getNCvar(fnamec,field.upper(),timesel=timesel,
seas=sea)*conv + cnc.getNCvar(fnamecb,fieldb.upper(),
timesel=timesel,seas=sea)*conv
fldpsea = cnc.getNCvar(fnamep,field.upper(),timesel=timesel,
seas=seas)*conv + cnc.getNCvar(fnamepb,fieldb.upper(),
timesel=timesel,seas=sea)*conv
field='turb'
elif field=='net':
print '@@ not implemented for seasonal maps'
else:
if threed:
getfld=ncfield
else:
getfld=field.upper()
fldcsea = cnc.getNCvar(fnamec,getfld,timesel=timesel,
seas=sea)*conv
fldpsea = cnc.getNCvar(fnamep,getfld,timesel=timesel,
seas=sea)*conv
## if threed==0:
## fldcsea = cnc.getNCvar(fnamec,field.upper(),timesel=timesel,
## seas=sea)*conv
## fldpsea = cnc.getNCvar(fnamep,field.upper(),timesel=timesel,
## seas=sea)*conv
## else:
## fldcsea = np.append(cnc.getNCvar(fnamec,ncfield,timesel='0002-01-01,061-12-31',levsel=level,
## seas=sea)*conv,
## cnc.getNCvar(fnamec2,ncfield,levsel=level,seas=sea)*conv,axis=0)
## fldpsea = np.append(cnc.getNCvar(fnamep,ncfield,timesel='0002-01-01,061-12-31',levsel=level,
## seas=sea)*conv,
## cnc.getNCvar(fnamep2,ncfield,levsel=level,seas=sea)*conv,axis=0)
tstat[cidx,:,:],pval[cidx,:,:] = sp.stats.ttest_ind(fldpsea,fldcsea,axis=0)
fldcallseas[cidx,:,:] = np.mean(fldcsea,axis=0)
fldpallseas[cidx,:,:] = np.mean(fldpsea,axis=0)
if pct:
plotfld = (fldpallseas[cidx,:,:]-fldcallseas[cidx,:,:]) / fldcallseas[cidx,:,:] *100
cminm=cminmpct
cmaxm=cmaxmpct
else:
plotfld = fldpallseas[cidx,:,:] - fldcallseas[cidx,:,:]
pparams = dict(cmin=cminm,cmax=cmaxm,cmap=cmap,type='nh',axis=ax,latlim=latlim)
if seasvert: # zonal mean with height
pparams['suppcb'] = True
pparams['levlim'] = levlim
pparams['screen'] = screen
pparams['addcontlines'] = True
if ridx!=0: # if not the first column, suppress y labels
pparams['suppylab'] = True
pc = cplt.vert_plot(plotfld,lev,lat,**pparams)
if sigoff==0:
cplt.addtsig(ax,pval[cidx,...],lat,lev/100.,type=sigtype) # @@ dims?