-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathevaluation.py
executable file
·74 lines (67 loc) · 2.03 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
from numba import jit
from sklearn.metrics import average_precision_score, roc_auc_score
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# Evaluate ROC using predicted matrix
def evaluate_ROC_from_matrix(X_edges, y_true, matrix):
y_predict = [sigmoid(matrix[int(edge[0]), int(edge[1])]) for edge in X_edges]
roc = roc_auc_score(y_true, y_predict)
if roc < 0.5:
roc = 1 - roc
pr = average_precision_score(y_true, y_predict)
return roc, pr
# Load the embedding generated by other methods:LINE, Node2vec
def load_embedding(embedding_file, N, combineAttribute=False, datafile=None):
f = open(embedding_file)
i = 0
line = f.readline()
line = line.strip().split(' ')
d = int(line[1])
embeddings = np.random.randn(int(N), d)
line = f.readline()
while line:
line = line.strip().split(' ')
embeddings[int(line[0]),:] = line[1:]
i = i + 1
line = f.readline()
f.close()
if combineAttribute:
data = load_datafile(datafile, N)
# print(data.shape)
temp = np.hstack((embeddings, data))
# print(temp.shape)
embeddings = temp
return embeddings
# Load the expression data
def load_datafile(data_file, N):
f = open(data_file)
i = 0
line = f.readline()
line = line.strip().split(' ')
d = len(line[1:])
data = np.zeros([int(N), d])
while line:
# print(i)
data[int(line[0]),:] = line[1:]
i = i + 1
line = f.readline()
if i < N:
line = line.strip().split(' ')
else:
break
f.close()
return data
@jit
def get_edge_embeddings(Embeddings, edge_list):
embs = []
for i in range(len(edge_list)):
edge = np.array(edge_list)[i, :]
node1 = int(edge[0])
node2 = int(edge[1])
emb1 = Embeddings[node1]
emb2 = Embeddings[node2]
edge_emb = np.multiply(emb1, emb2)
embs.append(edge_emb)
embs = np.array(embs)
return embs