Skip to content

Latest commit

 

History

History
227 lines (188 loc) · 6.9 KB

README.md

File metadata and controls

227 lines (188 loc) · 6.9 KB

ka-ve_summarify

Takım Üyeleri

Kullanım

Türkçe Metin Özetleme ve Ka|Ve Stemmer

Gerekli Kütüphaneler

import pandas as pd
import numpy as np
from nltk.corpus import stopwords
import heapq
from gensim.summarization import keywords
from nltk import sent_tokenize
from sklearn.metrics.pairwise import cosine_similarity
from gensim.models import KeyedVectors
import networkx as nx
import re
import numpy as np
import json
import pickle
from keras.models import model_from_json
from keras.models import load_model
import Extraction_Based_Text_Summarization

Yukarıdaki kütüphaneleri programınıza ekledikten sonra,

ex_sum = extraction_based_sum()

kodu ile class'ı çağırabilir. Sonrasında elinizde özetlenmesini istediğiniz veri ile

ex_sum.get_sentences(text,k)

k kadar cümleyi metinden alabilirsiniz. Anahtar kelime çıkarımı için ise,

ex_sum.get_keywords(text,ratio)

kodunu kullanarak, metindeki kelime sayısının oranı kadar anahtar kelime alabilirsiniz. Bu sayıyı ratio değeri ile kontrol edebilirsiniz.

Doc2Vec Method

Gerekli Kütüphaneler

import pandas as pd
import re
import numpy as np
import gensim

Kütüphaneler eklendikten sonra, önceden eğitilmiş Word2Vec modeliyle[2] Döküman benzerliği class'ımızı çalıştırıyoruz.

ds = DocSim(w2v_model,stopwords)

Sonrasında ise, elimizdeki dökümana en çok benzeyen 10 dökümanı sıralamak için aşağıdaki satırı çalıştırıyoruz.

sim_scores = ds.calculate_similarity(source_doc, target_docs)

Flask API

Flask API'sini kullanabilmek için ilk önce bir sanal flask ortamı oluşturmanız gerekiyor. Sonrasında ise aşağıda belirtilen kütüphaneleri kurmanız gerekmekte:

import pandas as pd
import numpy as np
from bs4 import BeautifulSoup as bs
import requests 
import datetime
from nltk.corpus import stopwords
import heapq
from gensim.summarization import keywords
from nltk import sent_tokenize
from sklearn.metrics.pairwise import cosine_similarity
import networkx as nx
import re
import json
import pickle
from keras.models import model_from_json
from keras.models import load_model
from gensim.models import KeyedVectors
from gensim.corpora.wikicorpus import WikiCorpus
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from gensim.models import Doc2Vec
import tensorflow as tf

Kütüphaneleri kurduktan sonra, python main.pykomutunu çalıştırarak, ürünü demo hâlinde deneyebilirsiniz.

Veri Çekme / Oluşturma

Examples klasöründe bulunan hürriyetScraper dosyasından hurriyet.com.tr sitesi üzerinde haberleri çekerek, kendi verisetinizi oluşturabilir, bu örneği kullanarak TsCorpus üzerinden elinizdeki veriyi parçalayacak bir scraper yazabilirsiniz.

Referanslar

Demo Video

Demo Video

----------------------------------------------------------------------------------------------

Team Members

How to use

Turkish Text Summarization and Ka|Ve Stemmer

Necessary Libraries

import pandas as pd
import numpy as np
from nltk.corpus import stopwords
import heapq
from gensim.summarization import keywords
from nltk import sent_tokenize
from sklearn.metrics.pairwise import cosine_similarity
from gensim.models import KeyedVectors
import networkx as nx
import re
import numpy as np
import json
import pickle
from keras.models import model_from_json
from keras.models import load_model
import Extraction_Based_Text_Summarization

After you've added those libraries,

ex_sum = extraction_based_sum()

you can use the class with that code, and after that, with the text you want to be summarized,

ex_sum.get_sentences(text,k)

you can take the best k sentences from it. For keyword extraction,

ex_sum.get_keywords(text,ratio)

with the code above, you can get keywords according to the ratio of the word count in the text. You can control that by changing ratio value.

Doc2Vec Method

Necessary Libraries

import pandas as pd
import re
import numpy as np
import gensim

After importing the libraries, using the pre-trained Word2Vec model for Turkish[2], we've created our similarity model.

ds = DocSim(w2v_model,stopwords)

After that, using the code below, we've listed the most similar 10 documents to the document we've entered.

sim_scores = ds.calculate_similarity(source_doc, target_docs)

Flask API

In order to use Flask, you first need to create a virtual flask environment in order to avoid any conflict. The libraries used are as follows:

import pandas as pd
import numpy as np
from bs4 import BeautifulSoup as bs
import requests 
import datetime
from nltk.corpus import stopwords
import heapq
from gensim.summarization import keywords
from nltk import sent_tokenize
from sklearn.metrics.pairwise import cosine_similarity
import networkx as nx
import re
import json
import pickle
from keras.models import model_from_json
from keras.models import load_model
from gensim.models import KeyedVectors
from gensim.corpora.wikicorpus import WikiCorpus
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from gensim.models import Doc2Vec
import tensorflow as tf

After downloading the libraries, you can use the live dome by running the code: `python main.py

Data Scraping

In the Examples folder, in hurriyetScraper file, you can find our scraper for hurriyet.com.tr. From this file,you can scrape your own dataset, and by referencing it you can write your own TsCorpus scraper for further analysis.

References

Demo Video

Demo Video