-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepare_data.py
508 lines (435 loc) · 21 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import argparse
import numpy as np
import torch
import torch.nn.functional as F
from pathlib import Path
from PIL import Image
from tqdm import tqdm
from torchvision import transforms
from torchvision.datasets.utils import download_file_from_google_drive
from torchvision.utils import save_image
from datasets.cub import CUBDataset
from datasets.spair import SpairDataset
from models.utils import sample_from_reverse_flow
from commons.utils import str2bool
from commons.draw import draw_kps, get_dense_colors, splat_points, load_fg_points
from thirdparty.MLS.mls import mls_rigid_deformation
from commons.utils import map_minmax
from thirdparty.dino_vit_features.cosegmentation import coseg_from_feat
from thirdparty.dino_vit_features.extractor import ViTExtractor
from thirdparty.dino_vit_features.correspondences import corrs_from_feat
from thirdparty.dino_vit_features.part_cosegmentation import parts_from_feat
from thirdparty.DIS.isnet import ISNetDIS
@torch.no_grad()
def extract_features_and_saliency_maps(
extractor, img_size, layer, facet, bin, transform, dset, out_dir,
device):
images_list = []
descriptors_list = []
saliency_maps_list = []
num_patches = extractor.get_num_patches(img_size, img_size)[0]
image_paths = dset.files
# Extract features and saliency maps
print("Extracting features and saliency maps")
feat_dir = out_dir / f'feat_l{layer}_f{facet}_b{bin:1d}'
feat_dir.mkdir(exist_ok=True, parents=True)
saliency_map_dir = out_dir / 'saliency'
saliency_map_dir.mkdir(exist_ok=True, parents=True)
for i in tqdm(range(len(dset))):
img = dset.imgs[i].to(device)
img_unnorm = img * 0.5 + 0.5
img_np = ((img_unnorm) * 255).permute(1, 2, 0).cpu().numpy()
images_list.append(img_np.astype(np.uint8))
img_norm = transform(img_unnorm).unsqueeze(0)
fname = Path(image_paths[i]).stem
# Extract and save features
feat_fname = feat_dir / f'{fname}.npy'
if feat_fname.is_file():
feat = np.load(feat_fname)
else:
feat = extractor.extract_descriptors(img_norm, layer, facet, bin)
feat = feat.cpu().squeeze().numpy()
np.save(feat_fname, feat)
descriptors_list.append(feat)
sal_fname = saliency_map_dir / f'{fname}.png'
if sal_fname.is_file():
saliency_map = Image.open(sal_fname).convert('L')
saliency_map = np.array(saliency_map).astype(np.float32) / 255
saliency_map = saliency_map.reshape(-1)
else:
saliency_map = extractor.extract_saliency_maps(img_norm)
saliency_map = saliency_map.squeeze().cpu().numpy()
saliency_map = saliency_map.reshape(num_patches, num_patches)
saliency_map = Image.fromarray((saliency_map * 255).astype(np.uint8))
saliency_map.save(sal_fname)
saliency_map = np.array(saliency_map).astype(np.float32) / 255
saliency_map = saliency_map.reshape(-1)
saliency_maps_list.append(saliency_map)
return images_list, descriptors_list, saliency_maps_list
def save_cosegmentations(extractor, dset, out_dir, img_size, transform, device,
layer=11, facet='key', bin=False, thresh=0.065, elbow=0.975,
votes_percentage=75, sample_interval=100):
print("Running co-segmentation on collection of images")
images_list, descriptors_list, saliency_maps_list = \
extract_features_and_saliency_maps(
extractor, img_size, layer, facet, bin, transform, dset, out_dir,
device)
image_paths = dset.files
# Run cosegmentation
print("Computing masks")
segmentation_masks = coseg_from_feat(
images_list, descriptors_list, saliency_maps_list,
img_size, extractor.get_num_patches(img_size, img_size)[0],
elbow, thresh, votes_percentage, sample_interval)
masks_dir = out_dir / 'masks_coseg'
masks_dir.mkdir(exist_ok=True, parents=True)
for i in tqdm(range(len(dset))):
fname = Path(image_paths[i]).stem
mask_fname = masks_dir / f'{fname}.png'
segmentation_masks[i].save(mask_fname)
@torch.no_grad()
def save_bg(model_path, dset, out_dir, in_size, device):
net=ISNetDIS()
model_path = Path(model_path)
if not model_path.exists():
model_id = "1nV57qKuy--d5u1yvkng9aXW1KS4sOpOi"
download_file_from_google_drive(model_id, model_path.parent, filename=model_path.name)
net.load_state_dict(torch.load(model_path, map_location="cpu"))
net = net.to(device)
net.eval()
image_paths = dset.files
out_dir = out_dir / 'masks'
out_dir.mkdir(exist_ok=True, parents=True)
print("Computing masks")
for i in tqdm(range(len(dset))):
img = dset.imgs[i].to(device)
# From [-1, 1] to [-0.5, 0.5]
img = img / 2.0
img = F.upsample(img.unsqueeze(0), in_size, mode='bilinear')
mask = net(img)
mask = torch.squeeze(F.upsample(mask[0][0], dset.img_size, mode='bilinear'), 0)
ma = torch.max(mask)
mi = torch.min(mask)
mask = (mask-mi)/(ma-mi)
fname = Path(image_paths[i]).stem
mask_fname = out_dir / f'{fname}.png'
mask = (mask.squeeze() * 255).cpu().numpy()
Image.fromarray(mask.astype(np.uint8)).save(mask_fname)
@torch.no_grad()
def save_correspondences(extractor, dset, out_dir, img_size, transform, device,
layer=9, facet='key', bin=False):
print("Saving NBB for all pairs of images")
_, descriptors_list, saliency_maps_list = \
extract_features_and_saliency_maps(
extractor, img_size, layer, facet, bin, transform, dset, out_dir, device)
image_paths = dset.files
num_patches = extractor.get_num_patches(img_size, img_size)[0]
masks_dir = out_dir / 'masks'
masks_list = []
for i in tqdm(range(len(dset))):
fname = Path(image_paths[i]).stem
mask_fname = masks_dir / f'{fname}.png'
mask = Image.open(mask_fname).convert('L')
masks_list.append(mask)
matches_dir = out_dir / f'nbb'
matches_dir.mkdir(exist_ok=True, parents=True)
descriptors_list = torch.stack([
torch.from_numpy(descriptor).to(device)
for descriptor in descriptors_list
])
for i in tqdm(range(len(dset)-1)):
img1 = dset.imgs[i].to(device)
fname1 = Path(image_paths[i]).stem
feat1 = descriptors_list[i]
mask1 = masks_list[i]
saliency_map1 = saliency_maps_list[i]
for j in range(i+1, len(dset)):
img2 = dset.imgs[j].to(device)
fname2 = Path(image_paths[j]).stem
feat2 = descriptors_list[j]
mask2 = masks_list[j]
saliency_map2 = saliency_maps_list[j]
fname = matches_dir / f'{fname1}_{fname2}.npy'
if fname.exists():
continue
pt1, pt2, pt1_idx, pt2_idx, ranks_sal, ranks_sim = corrs_from_feat(
feat1, feat2, saliency_map1, saliency_map2,
num_patches, extractor.stride[0], extractor.p, device,
mask1, mask2)
# Save the output
fname = matches_dir / f'{fname1}_{fname2}.npy'
d = {
'kp1': pt1.cpu().numpy().astype(np.int32),
'kp2': pt2.cpu().numpy().astype(np.int32),
'kp1_idx': pt1_idx,
'kp2_idx': pt2_idx,
'ranks_attn': ranks_sal,
'ranks_sim': ranks_sim.cpu().numpy(),
}
np.save(fname, d)
# Save sparse correspondences
colors = get_dense_colors(pt1, img_size)
colors = colors.to(device).unsqueeze(0).expand(2, -1, -1)
sparse_corrs = splat_points(
torch.stack([img1, img2], dim=0),
torch.stack([pt1, pt2]).float().to(device),
sigma=2., opacity=1.0, colors=map_minmax(colors, 0, 1, -1, 1))
fname = matches_dir / f'{fname1}_{fname2}.jpg'
save_image(sparse_corrs, fname, normalize=True, padding=2, pad_value=1)
@torch.no_grad()
def save_mls(extractor, dset, out_dir, img_size, transform, device,
layer=9, facet='key', bin=False, mls_num=None, mls_alpha=1.):
print("Converting NBB to MLS for all pairs of images")
_, descriptors_list, saliency_maps_list = \
extract_features_and_saliency_maps(
extractor, img_size, layer, facet, bin, transform, dset, out_dir, device)
image_paths = dset.files
num_patches = extractor.get_num_patches(img_size, img_size)[0]
masks_dir = out_dir / 'masks'
masks_list = []
for i in tqdm(range(len(dset))):
fname = Path(image_paths[i]).stem
mask_fname = masks_dir / f'{fname}.png'
mask = Image.open(mask_fname).convert('L')
masks_list.append(mask)
matches_dir = out_dir / f'nbb'
matches_dir.mkdir(exist_ok=True, parents=True)
descriptors_list = torch.stack([
torch.from_numpy(descriptor).to(device)
for descriptor in descriptors_list
])
if mls_num is not None:
flow_dir = out_dir / f'mls_num{mls_num}_alpha{mls_alpha}'
else:
flow_dir = out_dir / f'mls_alpha{mls_alpha}'
flow_dir.mkdir(exist_ok=True, parents=True)
for i in tqdm(range(len(dset)-1)):
img1 = dset.imgs[i].to(device)
fname1 = Path(image_paths[i]).stem
mask1 = masks_list[i]
mask1 = torch.from_numpy(np.array(mask1)>0).to(device)
for j in range(i+1, len(dset)):
torch.cuda.empty_cache()
img2 = dset.imgs[j].to(device)
fname2 = Path(image_paths[j]).stem
mask2 = masks_list[j]
mask2 = torch.from_numpy(np.array(mask2)>0).to(device)
fname = matches_dir / f'{fname1}_{fname2}.npy'
d = np.load(fname, allow_pickle=True).item()
kp1 = d['kp1']
kp1_idx = d['kp1_idx']
kp2 = d['kp2']
kp2_idx = d['kp2_idx']
ranks_attn = d['ranks_attn']
# Run kmeans to get a few well distributed keypoints
# if mls_num is not None:
# use_indices = kmeans_correspondences(
# feat1[kp1_idx], feat2[kp2_idx], ranks_attn, mls_num)
# use_indices = use_indices.astype(np.int32)
# else:
use_indices = np.arange(len(kp1_idx))
# Save sparse correspondences (from kmeans)
sparse_corrs = draw_kps(
img1, img2, kp1[use_indices], kp2[use_indices], lines=False)
fname = flow_dir / f'sparse_{fname1}_{fname2}.jpg'
sparse_corrs.save(fname)
# Reverse flow from correspondences (MLS)
flow21 = mls_rigid_deformation(
torch.from_numpy(kp1[use_indices]).to(device),
torch.from_numpy(kp2[use_indices]).to(device),
alpha=mls_alpha, resolution=img_size)
flow21 = flow21.permute(1, 2, 0)
flow12 = mls_rigid_deformation(
torch.from_numpy(kp2[use_indices]).to(device),
torch.from_numpy(kp1[use_indices]).to(device),
alpha=mls_alpha, resolution=img_size)
flow12 = flow12.permute(1, 2, 0)
fname = flow_dir / f'{fname1}_{fname2}.npy'
np.save(fname, flow12.cpu().numpy())
fname = flow_dir / f'{fname2}_{fname1}.npy'
np.save(fname, flow21.cpu().numpy())
# Dense correspondence (1 to 2) from MLS
pt1_fg, pt1_fg_alpha, colors = load_fg_points(
mask1.unsqueeze(0), resolution=img_size // 2)
pt1_fg_to_2 = sample_from_reverse_flow(
flow21.unsqueeze(0).float(), pt1_fg)
colors = colors.to(device).expand(2, -1, -1)
dense_corrs = splat_points(
torch.stack([img1, img2], dim=0),
torch.cat([pt1_fg, pt1_fg_to_2]).float(),
sigma=1.3, opacity=0.75,
colors=map_minmax(colors, 0, 1, -1, 1),
alpha_channel=pt1_fg_alpha.unsqueeze(-1).expand(2, -1, -1)
)
img1_warped = F.grid_sample(
img1.unsqueeze(0),
map_minmax(flow21, 0, img_size, -1, 1).unsqueeze(0),
align_corners=True)
fname = flow_dir / f'dense_{fname1}_{fname2}.jpg'
save_image(torch.cat([dense_corrs, img1_warped]), fname,
normalize=True, padding=2, pad_value=1)
# Dense correspondence (2 to 1) from MLS
pt2_fg, pt2_fg_alpha, colors = load_fg_points(
mask2.unsqueeze(0), resolution=img_size // 2)
pt2_fg_to_1 = sample_from_reverse_flow(
flow12.unsqueeze(0).float(), pt2_fg)
colors = colors.to(device).expand(2, -1, -1)
dense_corrs = splat_points(
torch.stack([img2, img1], dim=0),
torch.cat([pt2_fg, pt2_fg_to_1]).float(),
sigma=1.3, opacity=0.75,
colors=map_minmax(colors, 0, 1, -1, 1),
alpha_channel=pt2_fg_alpha.unsqueeze(-1).expand(2, -1, -1)
)
img2_warped = F.grid_sample(
img2.unsqueeze(0),
map_minmax(flow12, 0, img_size, -1, 1).unsqueeze(0),
align_corners=True)
fname = flow_dir / f'dense_{fname2}_{fname1}.jpg'
save_image(torch.cat([dense_corrs, img2_warped]), fname,
normalize=True, padding=2, pad_value=1)
@torch.no_grad()
def save_part_cosegmentations(
extractor, dset, out_dir, num_parts, img_size, transform, device,
layer=11, facet='key', bin=False, thresh=0.065, elbow=0.975,
votes_percentage=75, sample_interval=100, num_crop_augmentations=5,
three_stages=False, elbow_second_stage=0.94):
images_list, descriptors_list, _ = \
extract_features_and_saliency_maps(
extractor, img_size, layer, facet, bin, transform, dset, out_dir,
device)
image_paths = dset.files
num_patches = extractor.get_num_patches(img_size, img_size)[0]
masks_dir = out_dir / 'masks'
masks_list = []
for i in tqdm(range(len(dset))):
fname = Path(image_paths[i]).stem
mask_fname = masks_dir / f'{fname}.png'
mask = Image.open(mask_fname).convert('L')
mask = mask.resize((num_patches, num_patches), resample=Image.LANCZOS)
mask = torch.from_numpy(np.array(mask).reshape(-1)).to(device) / 255.
masks_list.append(mask)
if num_parts > 0:
parts_dir = out_dir / f'parts_num{num_parts}'
else:
parts_dir = out_dir / f'parts'
parts_dir.mkdir(exist_ok=True, parents=True)
parts_from_feat(
extractor, layer, facet, bin, transform, descriptors_list,
masks_list, images_list, dset.files, img_size, device, elbow,
thresh, votes_percentage, sample_interval, num_parts,
num_crop_augmentations, three_stages, elbow_second_stage, parts_dir)
def main():
parser = argparse.ArgumentParser(description='Preprocess images')
# Input
parser.add_argument("--dset", type=str, default='cub',
choices=['cub', 'spair'],
help="data type")
parser.add_argument("--img_dir", type=str, required= True, help="Path to images")
parser.add_argument("--img_size", type=int, default=256,
help="Image size")
# Output
parser.add_argument("--out_dir", type=str, default='data',
help="Output path")
# Cub and spair dataset arguments
parser.add_argument("--cub_idx", type=int, default=1, help="cub category")
parser.add_argument("--spair_cat", default='cat', help="spair category")
parser.add_argument("--split", default='test', help="split")
# DINO Hyperparameters
parser.add_argument('--stride', default=2, type=int,
help="""stride of first convolution layer.
small stride -> higher resolution.""")
parser.add_argument('--model_type', default='dino_vits8',
choices=['dino_vits8', 'dino_vits16', 'dino_vitb8',
'dino_vitb16', 'vit_small_patch8_224',
'vit_small_patch16_224', 'vit_base_patch8_224',
'vit_base_patch16_224', 'dinov2_vits14', 'dinov2_vitb14'],
help='type of model to extract.')
# Tasks
parser.add_argument("--run", default=None,
choices=['coseg', 'bg', 'corrs', 'parts', 'mls', None],
help="To run")
# Co-segmentation hyperparams
parser.add_argument('--bg_layer', default=11, type=int)
parser.add_argument('--bg_facet', default='key')
parser.add_argument('--bg_bin', default=False, type=str2bool)
parser.add_argument('--bg_thresh', default=0.065, type=float)
parser.add_argument('--bg_elbow', default=0.975, type=float)
parser.add_argument('--bg_votes_percentage', default=75, type=float)
parser.add_argument('--bg_sample_interval', default=100, type=int)
# BG-segmentation hyperparams
parser.add_argument("--bg_raw_size", type=int, default=1024, help="Image size")
parser.add_argument("--bg_model_path", default='thirdparty/DIS/isnet-general-use.pth',
help="Path to pretrained weights")
# Correspondence Hyperparameters
parser.add_argument('--nbb_layer', default=9, type=int)
parser.add_argument('--nbb_facet', default='key')
parser.add_argument('--nbb_bin', default=False, type=str2bool)
parser.add_argument('--mls_num', default=None, type=int,
help="number of points for MLS")
parser.add_argument('--mls_alpha', default=1., type=float,
help="rigidity coefficient")
# Parts Hyperparameters
parser.add_argument('--num_parts', default=4, type=int, help="number of parts")
# Co-segmentation hyperparams
parser.add_argument('--parts_layer', default=11, type=int)
parser.add_argument('--parts_facet', default='key')
parser.add_argument('--parts_bin', default=False, type=str2bool)
parser.add_argument('--parts_thresh', default=0.065, type=float)
parser.add_argument('--parts_elbow', default=0.975, type=float)
parser.add_argument('--parts_votes_percentage', default=20, type=float)
parser.add_argument('--parts_sample_interval', default=100, type=int)
parser.add_argument('--parts_num_crop_augmentations', default=1, type=int)
parser.add_argument('--parts_three_stages', default=False, type=str2bool)
parser.add_argument('--parts_elbow_second_stage', default=0.94, type=float)
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if args.dset.lower() == 'cub':
dset = CUBDataset(
args.img_dir, split=args.split, img_size=args.img_size,
cls_idx=args.cub_idx)
base_dir = f'{args.dset.lower()}/{args.split}/{args.cub_idx:03d}'
elif args.dset.lower() == 'spair':
dset = SpairDataset(
args.img_dir, split=args.split, img_size=args.img_size,
spair_cat=args.spair_cat)
base_dir = f'{args.dset.lower()}/{args.split}/{args.spair_cat}'
else:
raise NotImplementedError
out_dir = Path(args.out_dir) / base_dir / f'{args.model_type}_s{args.stride}'
out_dir.mkdir(exist_ok=True, parents=True)
# Background subtraction
if args.run is None or args.run == 'bg':
# save_cosegmentations(
# extractor, dset, out_dir, args.img_size, transform, device,
# layer=args.bg_layer, facet=args.bg_facet, bin=args.bg_bin,
# thresh=args.bg_thresh, elbow=args.bg_elbow,
# votes_percentage=args.bg_votes_percentage,
# sample_interval=args.bg_sample_interval)
save_bg(args.bg_model_path, dset, out_dir, args.bg_raw_size, device)
# Neural Best Buddies
transform = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
extractor = ViTExtractor(args.model_type, args.stride, device=device)
if args.run is None or args.run == 'corrs':
save_correspondences(
extractor, dset, out_dir, args.img_size, transform, device,
layer=args.nbb_layer, facet=args.nbb_facet, bin=args.nbb_bin)
# Dense correspondence from best buddies
if args.run == 'mls':
save_mls(extractor, dset, out_dir, args.img_size, transform, device,
args.nbb_layer, args.nbb_facet, args.nbb_bin, args.mls_num,
args.mls_alpha)
# Part Co-Segmentation
if args.run is None or args.run == 'parts':
save_part_cosegmentations(
extractor, dset, out_dir, args.num_parts, args.img_size, transform,
device, layer=args.parts_layer, facet=args.parts_facet,
bin=args.parts_bin, thresh=args.parts_thresh, elbow=args.parts_elbow,
votes_percentage=args.parts_votes_percentage,
sample_interval=args.parts_sample_interval,
num_crop_augmentations=args.parts_num_crop_augmentations,
three_stages=args.parts_three_stages,
elbow_second_stage=args.parts_elbow_second_stage)
if __name__ == '__main__':
main()