-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfashion_mnist.py
43 lines (31 loc) · 1.14 KB
/
fashion_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from keras.datasets import fashion_mnist
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import time
#Importing the DataSet
((trainX, trainY), (testX, testY)) = fashion_mnist.load_data()
def Get_All_Distances(query_desc,images):
images_and_distance = []
image = []
for i in range(len(images)):
image = images[i]
image_and_distance = { 'image':image,'distance':np.corrcoef(query_desc,image.flatten())[0][1]} #change descriptor here!
images_and_distance.append(image_and_distance)
return images_and_distance
def Show_Results(result,size):
result = list(result)
plt.figure(figsize=(15,15))
for i in range(size):
image_and_desc = result[i]
plt.subplot(5,10,i+1)
plt.xticks([image_and_desc['distance']])
plt.yticks([])
plt.grid(False)
plt.imshow(image_and_desc['image'], cmap=plt.cm.binary)
plt.show()
initial = time.time()
images_descriptors = Get_All_Distances(testX[1].flatten(),trainX)
result = list(filter(lambda x:x['distance'] > 0.6,images_descriptors))
print("Execution Time : ",time.time() - initial)
Show_Results(result,20)