-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·264 lines (215 loc) · 9.34 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import design_bench
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import itertools
import time
import argparse
from torch.utils.data import DataLoader
from torch.distributions import Categorical
from dataset import SequenceDataset, ScoreDataset, ZipDataset
from tqdm import tqdm
from lib.acquisition_fn import get_acq_fn
from lib.dataset import get_dataset
from lib.oracle_wrapper import get_oracle
from lib.proxy import get_proxy_model
from lib.utils.distance import is_similar, edit_dist
from lib.utils.env import get_tokenizer
import random
from model.condlstm import CondDecoder
from design_bench.datasets.discrete_dataset import DiscreteDataset
import flexs
DEBUG_MODE = False
USE_CUDA = True
CUDA_NUM = 0
def normalize(dataset,y):
y = (y - dataset.y.min())/(dataset.y.max()-dataset.y.min())
return y
# proxy contruction code following GFN-AL
def construct_proxy(tokenizer,num_token,max_len,hparams):
proxy = get_proxy_model(tokenizer,num_token,max_len)
sigmoid = nn.Sigmoid()
l2r = lambda x: x.clamp(min=0) / 1
acq_fn = get_acq_fn()
return acq_fn(proxy, l2r)
# Diversity measurement code following GFN-AL
def mean_pairwise_distances(seqs):
dists = []
for pair in itertools.combinations(seqs, 2):
dists.append(edit_dist(*pair))
return np.mean(dists)
def tostr(seqs):
return ["".join([str(i) for i in x]) for x in seqs]
def inference(model,task,task_dataset,oracle,num_token,max_len,device,proxy,temp=1):
model.eval()
score_query = 1.0
batch = model.decode(score_query,1280, device,max_len=max_len,start=num_token,argmax=False,temp=1)
# for uniqueness
unique_batch_reshaped, indices = torch.unique(batch, dim=0, return_inverse=True)
# Finally, we can reshape the tensor back to its original shape
B_new = unique_batch_reshaped.size()[0]
batch = unique_batch_reshaped.reshape(B_new, batch.shape[1])
# filtering with proxy model
y_psuedo = proxy.eval(batch).cpu().numpy()
idx = np.argsort(y_psuedo,axis=0)
batch = batch.cpu().numpy()
batch = batch[idx][-128:].squeeze()
y = oracle(batch)
dist100 = mean_pairwise_distances(tostr(batch))
if task_dataset is not None:
y = normalize(task_dataset,y)
return np.percentile(y, 50), np.percentile(y, 100), dist100,y_psuedo.mean(),y,batch
def evaluation(models,proxy,task, task_dataset,num_token,device, hparams):
# diverse aggregation
if len(models)>1:
ensemble_x = []
ensemble_y = []
for model in models:
top_50, top_1, dist100,y_psuedo,y,x = inference(model,task,task_dataset,oracle,num_token,max_len,device,proxy)
idx = np.random.permutation(128)
n_subsamples = min(int(128/len(models)),128-len(ensemble_y))
# random sub sampling
y_rand = y[idx][:n_subsamples]
x_rand = x[idx][:n_subsamples]
ensemble_y.append(y_rand)
ensemble_x.append(x_rand)
maximum = np.percentile(ensemble_y,100)
median = np.percentile(ensemble_y,50)
ensemble_x = np.array(ensemble_x).reshape(128,-1)
diversity = mean_pairwise_distances(tostr(ensemble_x))
print("Percentile 50:", median)
print("Percentile 100:", maximum)
print("Diversity:", diversity)
return median,maximum, diversity,ensemble_y,ensemble_x
else:
model = models[0]
top_50, top_1, dist100,y_psuedo,y,x = inference(model,task,task_dataset,oracle,num_token,max_len,device,proxy)
print("Percentile 50:", top_50)
print("Percentile 100:", top_1)
print("Diversity:", dist100)
return top_50, top_1, dist100,y,x
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="rna1")
parser.add_argument('--save_model', action='store_true')
parser.add_argument('--save_solution', action='store_true')
parser.add_argument('--load_proxy', action='store_true')
# this is only an official hyperparameters for simple adaptation to new tasks.
# Please set higher learning rate (e.g., 5e-5), if the sequence dimension is high.
parser.add_argument("--lr",type=float,default=1e-5)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument('--DA', action='store_true')
hparams = parser.parse_args()
if USE_CUDA:
cuda_device_num = CUDA_NUM
torch.cuda.set_device(cuda_device_num)
device = torch.device('cuda', cuda_device_num)
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
device = torch.device('cpu')
torch.set_default_tensor_type('torch.FloatTensor')
if hparams.task=="tfbind":
from design_bench.datasets.discrete.tf_bind_8_dataset import TFBind8Dataset
task_dataset = TFBind8Dataset()
task = design_bench.make('TFBind8-Exact-v0')
landscape = None
num_token = 4
max_len = 8
elif hparams.task=="gfp":
from design_bench.datasets.discrete.gfp_dataset import GFPDataset
task_dataset = GFPDataset()
task = design_bench.make('GFP-Transformer-v0')
landscape = None
num_token = 20
max_len = 237
elif hparams.task=="utr":
from design_bench.datasets.discrete.utr_dataset import UTRDataset
task_dataset = UTRDataset()
task = design_bench.make('UTR-ResNet-v0')
landscape = None
num_token = 4
max_len = 50
# note we use 5000 RNA dataset where the maximum score is about 0.12
elif hparams.task=="rna1":
x = np.load('rna_data/RNA1_x.npy')
y = np.load('rna_data/RNA1_y.npy').reshape(-1,1)
problem = flexs.landscapes.rna.registry()['L14_RNA1']
landscape = flexs.landscapes.RNABinding(**problem['params'])
task = DiscreteDataset(x[:5000], y[:5000],num_classes=4)
task_dataset = None
num_token = 4
max_len = 14
elif hparams.task=="rna2":
x = np.load('rna_data/RNA2_x.npy')
y = np.load('rna_data/RNA2_y.npy').reshape(-1,1)
problem = flexs.landscapes.rna.registry()['L14_RNA2']
landscape = flexs.landscapes.RNABinding(**problem['params'])
task = DiscreteDataset(x[:5000], y[:5000],num_classes=4)
task_dataset = None
num_token = 4
max_len = 14
elif hparams.task=="rna3":
x = np.load('rna_data/RNA3_x.npy')
y = np.load('rna_data/RNA3_y.npy').reshape(-1,1)
problem = flexs.landscapes.rna.registry()['L14_RNA3']
landscape = flexs.landscapes.RNABinding(**problem['params'])
task = DiscreteDataset(x[:5000], y[:5000],num_classes=4)
task_dataset = None
num_token = 4
max_len = 14
else:
print("no such a task")
assert(False)
seed = 1
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
oracle = get_oracle(hparams.task,landscape)
dataset = get_dataset(hparams.task, oracle,task_dataset)
tokenizer = get_tokenizer(hparams.task)
# actually, the tokenizer is useless but we just followed GFN-AL code base
proxy = construct_proxy(tokenizer,num_token,max_len,hparams)
proxy.load("pretrained_proxy/{}/proxy.pt".format(hparams.task))
if hparams.DA:
models = []
for i in range(8):
model = CondDecoder(num_layers=2,hidden_dim=512,code_dim=256,num_token=num_token+1)
model.load_state_dict(torch.load('pretrained_generator/'+hparams.task+'/gen-{}.pt'.format(i))['model_state_dict'])
models.append(model)
medians = []
maximums = []
diversities = []
for i in range(8):
median,maximum, diversity,ensemble_y,ensemble_x = evaluation(models,proxy,task, task_dataset,num_token,device, hparams)
medians.append(median)
maximums.append(maximum)
diversities.append(diversity)
medians = np.array(medians)
maximums = np.array(maximums)
diversities = np.array(diversities)
print("percenile 100th {} +- {}".format(maximums.mean(), maximums.std()))
print("percenile 50th {} +- {}".format(medians.mean(), medians.std()))
print("Diversity {} +- {}".format(diversities.mean(), diversities.std()))
else:
medians = []
maximums = []
diversities = []
for i in range(8):
models = []
model = CondDecoder(num_layers=2,hidden_dim=512,code_dim=256,num_token=num_token+1)
model.load_state_dict(torch.load('pretrained_generator/'+hparams.task+'/new-gen-{}.pt'.format(i))['model_state_dict'])
models.append(model)
median,maximum, diversity,ensemble_y,ensemble_x = evaluation(models,proxy,task, task_dataset,num_token,device, hparams)
medians.append(median)
maximums.append(maximum)
diversities.append(diversity)
medians = np.array(medians)
maximums = np.array(maximums)
diversities = np.array(diversities)
print("percenile 100th {} +- {}".format(maximums.mean(), maximums.std()))
print("percenile 50th {} +- {}".format(medians.mean(), medians.std()))
print("Diversity {} +- {}".format(diversities.mean(), diversities.std()))