-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
186 lines (153 loc) · 5.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from model import BehaviourNetwork, EpisodeBuffer
import numpy as np
import gym
import yaml
import torch.nn.functional as F
import os
from torch.utils.tensorboard import SummaryWriter
import torch as th
import argparse
parser = argparse.ArgumentParser(description="ƃuıuɹɐǝן ʇuǝɯǝɔɹoɟuıǝɹ")
parser.add_argument("--config", dest="conf_file", type=str, default="config.yml")
args = parser.parse_args()
with open(args.conf_file, "r") as fl:
config = yaml.load(fl, Loader=yaml.FullLoader)
rg = np.random.RandomState(config["seed"])
device = (
th.device("cuda")
if th.cuda.is_available() and config["use_cuda"]
else th.device("cpu")
)
def update_network(net: BehaviourNetwork, buffer: EpisodeBuffer, batch_size: int = 32):
batch = buffer.sample(batch_size)
states, horizons, rewards, actions = [], [], [], []
for s, h, r, a in batch:
states.append(s)
horizons.append([h/ config["time_norm_factor"]])
rewards.append([r/ config["reward_norm_factor"]])
actions.append(a)
states = th.tensor(np.array(states, dtype=np.float32)).to(device)
horizons = th.tensor(np.array(horizons, dtype=np.float32)).to(device)
rewards = th.tensor(np.array(rewards, dtype=np.float32)).to(device)
actions = th.tensor(np.array(actions, dtype=np.long)).to(device)
loss = net.update(states, horizons, rewards, actions)
return float(loss.cpu().numpy())
def sample_trajectory(
env, tot_reward, time_steps, bnet, render=False, rand=False, config=config, evaluate=False,
):
if not rand:
bnet.eval()
state = env.reset()
done = False
rollout = []
rws = 0
t = 0
while not done:
if rand or (not evaluate and rg.rand() < config["epsilon"]):
action = env.action_space.sample()
else:
action = bnet.choose_action(
th.tensor(state, dtype=th.float32).to(device),
th.tensor([float(time_steps)/ config["time_norm_factor"]]).to(device),
th.tensor([float(tot_reward)/ config["reward_norm_factor"]]).to(device),
)
s1, r, done, _ = env.step(action)
# rollout.append([state.copy(), action, r, time_steps, tot_reward])
rollout.append([state.copy(), action, r])
state = s1
tot_reward -= r
time_steps -= 1
if render:
env.render()
rws += r
t += 1
config["epsilon"] = max(config["epsilon_min"], (1-config["epsilon_decay"])*config["epsilon"])
tot_rws = rws
for i, x in enumerate(rollout):
x.append((t - i) )
x.append(rws)
rws -= x[2]
return rollout, tot_rws
def get_explr_commands(buffer: EpisodeBuffer, num_sample_last: int = 100):
r = []
lens = []
for _, reward, l, _ in buffer.buffer[:num_sample_last]:
r.append(reward)
lens.append(l)
mean_r = np.mean(r)
std_r = np.std(r)
mean_l = np.mean(lens)
def foo():
return mean_r + rg.rand() * std_r, mean_l
return foo, mean_r, mean_l
env = gym.make(config["env_name"])
bnet = BehaviourNetwork(
env.observation_space.shape[0],
env.action_space.n,
config["hidden_dims"],
activation=th.relu if config["activation"] == "relu" else th.tanh,
lr=config["learning_rate"],
device=device,
).to(device)
buffer = EpisodeBuffer(max_size=config["buffer_size"])
log_dir = os.path.join("logs", config["log_file"])
os.makedirs(log_dir, exist_ok=True)
writer = SummaryWriter(log_dir=log_dir, flush_secs=30)
rws = []
trs = []
for _ in range(config["num_warmup"]):
trj, rw = sample_trajectory(env, 100, 100, bnet, rand=True)
buffer.add(trj, rw)
rws.append(rw)
trs.append(trj)
mean_l = np.mean([len(t) for t in trs])
mean_rw = np.mean(rws)
print(f"Random average reward: {mean_rw}")
writer.add_scalars("Rewards", {"Actual Reward": mean_rw, "Target Reward": mean_rw}, 0)
writer.add_scalars("Times", {"Actual Times": mean_l, "Target Times": mean_l}, 0)
ep = 1
best_rw = mean_rw
losses = []
for _ in range(config["num_steps_update"]):
update_network(bnet, buffer, config["batch_size"])
loss = update_network(bnet, buffer, config["batch_size"])
losses.append(loss)
loss = np.mean(losses)
writer.add_scalar("Behaviour Network Loss", loss, ep)
while ep <= config["max_episodes"]:
if ep % config["num_episodes_update"] == 0:
losses = []
for i in range(config["num_steps_update"]):
loss = update_network(bnet, buffer, config["batch_size"])
losses.append(loss)
loss = np.mean(losses)
writer.add_scalar("Behaviour Network Loss", loss, ep)
print(f"Episode {ep}: Loss {loss}")
explr_foo, mean_rew, mean_len = get_explr_commands(
buffer, config["num_sample_last"]
)
r, l = explr_foo()
trj, rw = sample_trajectory(env, r, l, bnet)
buffer.add(trj, rw)
if ep % config["eval_every"] == 0:
r, l = explr_foo()
rws = []
trs = []
for _ in range(config["eval_num_episodes"]):
tr, rw = sample_trajectory(env, r, l, bnet, evaluate=True)
trs.append(tr)
rws.append(rw)
#tr, rw = sample_trajectory(env, r, l, bnet, evaluate=True, render=True)
mean_l = np.mean([len(t) for t in trs])
mean_rw = np.mean(rws)
print(f"Episode: {ep}: Mean Reward: {mean_rw:.3f}")
writer.add_scalars(
"Rewards", {"Actual Reward": mean_rw, "Target Reward": mean_rew}, ep
)
writer.add_scalars(
"Times", {"Actual Times": mean_l, "Target Times": mean_len}, ep
)
if mean_rw > best_rw:
file_name = os.path.join(log_dir, f"model_ep_{ep}.pth")
bnet.save(file_name)
ep += 1