-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnmn.py
175 lines (128 loc) · 3.76 KB
/
nmn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# coding: utf-8
# In[115]:
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import random as rd
# In[116]:
#样本数
Xn = 10000
# # 生成数据
# In[117]:
def add_m(x, y):
return (x+y)
def minus_m(x, y):
return (x-y)
def multiply_m(x, y):
return (x*y)
print(add_m(1, 2), minus_m(1, 2), multiply_m(1, 2))
int2func = dict()
int2func[1] = add_m
int2func[2] = minus_m
int2func[3] = multiply_m
f1 = int2func[1]
f2 = int2func[2]
f3 = int2func[3]
print(f1(1, 2), f2(1, 2), f3(1, 2))
#len是模块的个数,也是数据的个数
def get_data(len):
fs = []
ds = []
for i in range(len):
rdf = rd.randint(1,3)
rdd = rd.random()
fs.append(rdf)
ds.append(rdd)
return fs,ds
print(get_data(5))
def get_result(fs, ds):
assert len(fs) == len(ds)
d0 = 0
for i in range(len(ds)):
func = int2func[fs[i]]
d1 = ds[i]
d0 = func(d0, d1)
return d0
print(get_result([1,2,3,1], [1, 3,2,4]))
# In[118]:
funcs = [] #计算链
datas = [] #待计算数据
ys = [] #计算结果
for i in range(0, Xn):
length = rd.randint(2,3) #限定计算链长度,太长数据可能远远超过1
assert length>=2 and length<=3
fs,ds = get_data(length)
funcs.append(fs)
datas.append(ds)
ys.append(get_result(fs, ds))
# # 定义模型
# In[121]:
#每个模块是一个三层的神经网络,relu激活函数
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.fc1 = nn.Linear(2, 10)
self.fc2 = nn.Linear(10, 10)
self.fc3 = nn.Linear(10, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
#最终的模块网络,网络最终有哪些模块由forward函数动态定义
class ModuleNet(nn.Module):
def __init__(self):
super(ModuleNet, self).__init__()
self.add_model = Model()
self.minus_model = Model()
self.multiply_model = Model()
self.int2module = dict()
self.int2module[1] = self.add_model
self.int2module[2] = self.minus_model
self.int2module[3] = self.multiply_model
# d0 --- module -- d0 --- module --- d0
# | |
# d1 d1
def forward(self, fs, ds):
assert len(fs)==len(ds)
d0 = Variable(torch.Tensor([0]))
ds = Variable(torch.Tensor(ds))
for i in range(len(fs)):
d1 = ds[i]
invar = torch.cat((d0, d1))
module = self.int2module[fs[i]]
d0 = module(invar)
return d0
# In[122]:
#实例化模块网络,定义损失函数优化器
modulenet = ModuleNet()
lose_fn = torch.nn.MSELoss()
optimizer = optim.SGD(modulenet.parameters(), lr=0.001, momentum=0.9)
# In[123]:
ys = Variable(torch.Tensor(ys))
t = Variable(torch.Tensor([0.2, 0.3]))
for epo in range(100):
#逐个样本前向计算、反向传播
for i in range(0, Xn):
optimizer.zero_grad()
pred = modulenet(funcs[i], datas[i])
loss = lose_fn(pred, ys[i])
loss.backward()
optimizer.step()
#打印
if(epo % 2 == 0 and i<10):
if i==0:
print("add: ", modulenet.add_model(t))
print("minus: ", modulenet.minus_model(t))
print("multiply: ", modulenet.multiply_model(t))
print(epo, i, loss.data[0])
# In[128]:
#测试单个模块是否学习结果是否符合预期
t = Variable(torch.Tensor([0.01, 0.03]))
print("add: ", modulenet.add_model(t))
print("minus: ", modulenet.minus_model(t))
print("multiply: ", modulenet.multiply_model(t))
# In[ ]: