-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathp4_qgan_hg.py
397 lines (337 loc) · 17.7 KB
/
p4_qgan_hg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import pennylane as qml
import numpy as np
import random
import matplotlib.pyplot as plt
import csv
import pandas as pd
import argparse
import os
import math
import datetime
import time
from frechetdist import frdist
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.utils.data as data
import torch.nn as nn
import torch.nn.functional as F
import torch
from solver import Solver
from data_loader import get_loader
from torch.backends import cudnn
from utils import *
from models import Generator, Discriminator
from data.sparse_molecular_dataset import SparseMolecularDataset
from rdkit import Chem
def str2bool(v):
return v.lower() in ('true')
dev = qml.device('default.qubit', wires=2)
@qml.qnode(dev, interface='torch')
def gen_circuit_1(w):
# random noise as generator input
z1 = random.uniform(-1, 1)
z2 = random.uniform(-1, 1)
layers = 1
qubits = 2
# construct generator circuit for both atom vector and node matrix
for i in range(qubits):
qml.RY(np.arcsin(z1), wires=i)
qml.RZ(np.arcsin(z2), wires=i)
for l in range(layers):
for i in range(qubits):
qml.RY(w[i], wires=i)
for i in range(qubits-1):
qml.CNOT(wires=[i, i+1])
qml.RZ(w[i+qubits], wires=i+1)
qml.CNOT(wires=[i, i+1])
return [qml.expval(qml.PauliZ(i)) for i in range(qubits)]
@qml.qnode(dev, interface='torch')
def gen_circuit_2(w):
# random noise as generator input
z1 = random.uniform(-1, 1)
z2 = random.uniform(-1, 1)
layers = 1
qubits = 2
# construct generator circuit for both atom vector and node matrix
for i in range(qubits):
qml.RY(np.arcsin(z1), wires=i)
qml.RZ(np.arcsin(z2), wires=i)
for l in range(layers):
for i in range(qubits):
qml.RY(w[i+3], wires=i)
for i in range(qubits-1):
qml.CNOT(wires=[i, i+1])
qml.RZ(w[i+qubits+3], wires=i+1)
qml.CNOT(wires=[i, i+1])
return [qml.expval(qml.PauliZ(i)) for i in range(qubits)]
@qml.qnode(dev, interface='torch')
def gen_circuit_3(w):
# random noise as generator input
z1 = random.uniform(-1, 1)
z2 = random.uniform(-1, 1)
layers = 1
qubits = 2
# construct generator circuit for both atom vector and node matrix
for i in range(qubits):
qml.RY(np.arcsin(z1), wires=i)
qml.RZ(np.arcsin(z2), wires=i)
for l in range(layers):
for i in range(qubits):
qml.RY(w[i+3*2], wires=i)
for i in range(qubits-1):
qml.CNOT(wires=[i, i+1])
qml.RZ(w[i+qubits+3*2], wires=i+1)
qml.CNOT(wires=[i, i+1])
return [qml.expval(qml.PauliZ(i)) for i in range(qubits)]
@qml.qnode(dev, interface='torch')
def gen_circuit_4(w):
# random noise as generator input
z1 = random.uniform(-1, 1)
z2 = random.uniform(-1, 1)
layers = 1
qubits = 2
# construct generator circuit for both atom vector and node matrix
for i in range(qubits):
qml.RY(np.arcsin(z1), wires=i)
qml.RZ(np.arcsin(z2), wires=i)
for l in range(layers):
for i in range(qubits):
qml.RY(w[i+3*3], wires=i)
for i in range(qubits-1):
qml.CNOT(wires=[i, i+1])
qml.RZ(w[i+qubits+3*3], wires=i+1)
qml.CNOT(wires=[i, i+1])
return [qml.expval(qml.PauliZ(i)) for i in range(qubits)]
def main(config):
# For fast training.
cudnn.benchmark = True
# Create directories if not exist.
if not os.path.exists(config.log_dir):
os.makedirs(config.log_dir)
if not os.path.exists(config.model_save_dir):
os.makedirs(config.model_save_dir)
if not os.path.exists(config.sample_dir):
os.makedirs(config.sample_dir)
if not os.path.exists(config.result_dir):
os.makedirs(config.result_dir)
# Solver for training and testing StarGAN.
self = Solver(config)
from logger import Logger
self.logger = Logger(self.log_dir)
# Learning rate cache for decaying.
g_lr = self.g_lr
d_lr = self.d_lr
gen_weights = torch.tensor(list(np.random.rand(12)*2-1), requires_grad=True)
self.g_optimizer = torch.optim.Adam(list(self.G.parameters())+list(self.V.parameters())+[gen_weights],
self.g_lr, [self.beta1, self.beta2])
# Start training from scratch or resume training.
start_iters = 0
if self.resume_iters:
start_iters = self.resume_iters
self.restore_model(self.resume_iters)
# Start training.
print('Start training...')
start_time = time.time()
for i in range(start_iters, self.num_iters):
# if (i+1) % self.log_step == 0:
# mols, _, _, a, x, _, _, _, _ = self.data.next_validation_batch()
# sample_list = [gen_circuit(gen_weights) for i in range(a.shape[0])]
# # z = self.sample_z(a.shape[0])
# print('[Valid]', '')
# else:
mols, _, _, a, x, _, _, _, _ = self.data.next_train_batch(self.batch_size)
# sample_list = [gen_circuit(gen_weights) for i in range(self.batch_size)]
sample_list = [torch.cat([gen_circuit_1(gen_weights), gen_circuit_2(gen_weights), gen_circuit_3(gen_weights),\
gen_circuit_4(gen_weights)]) for i in range(self.batch_size)]
# z = self.sample_z(self.batch_size)
# =================================================================================== #
# 1. Preprocess input data #
# =================================================================================== #
a = torch.from_numpy(a).to(self.device).long() # Adjacency.
x = torch.from_numpy(x).to(self.device).long() # Nodes.
a_tensor = self.label2onehot(a, self.b_dim)
x_tensor = self.label2onehot(x, self.m_dim)
z = torch.stack(tuple(sample_list)).to(self.device).float()
# z = torch.from_numpy(z).to(self.device).float()
# =================================================================================== #
# 2. Train the discriminator #
# =================================================================================== #
# Compute loss with real images.
logits_real, features_real = self.D(a_tensor, None, x_tensor)
d_loss_real = - torch.mean(logits_real)
# Compute loss with fake images.
edges_logits, nodes_logits = self.G(z)
# Postprocess with Gumbel softmax
(edges_hat, nodes_hat) = self.postprocess((edges_logits, nodes_logits), self.post_method)
logits_fake, features_fake = self.D(edges_hat, None, nodes_hat)
d_loss_fake = torch.mean(logits_fake)
# Compute loss for gradient penalty.
eps = torch.rand(logits_real.size(0),1,1,1).to(self.device)
x_int0 = (eps * a_tensor + (1. - eps) * edges_hat).requires_grad_(True)
x_int1 = (eps.squeeze(-1) * x_tensor + (1. - eps.squeeze(-1)) * nodes_hat).requires_grad_(True)
grad0, grad1 = self.D(x_int0, None, x_int1)
d_loss_gp = self.gradient_penalty(grad0, x_int0) + self.gradient_penalty(grad1, x_int1)
# Backward and optimize.
d_loss = d_loss_fake + d_loss_real + self.lambda_gp * d_loss_gp
self.reset_grad()
d_loss.backward(retain_graph=True)
self.d_optimizer.step()
# Logging.
loss = {}
loss['D/loss_real'] = d_loss_real.item()
loss['D/loss_fake'] = d_loss_fake.item()
loss['D/loss_gp'] = d_loss_gp.item()
# =================================================================================== #
# 3. Train the generator #
# =================================================================================== #
if (i+1) % self.n_critic == 0:
# Z-to-target
edges_logits, nodes_logits = self.G(z)
# Postprocess with Gumbel softmax
(edges_hat, nodes_hat) = self.postprocess((edges_logits, nodes_logits), self.post_method)
logits_fake, features_fake = self.D(edges_hat, None, nodes_hat)
g_loss_fake = - torch.mean(logits_fake)
# Real Reward
rewardR = torch.from_numpy(self.reward(mols)).to(self.device)
# Fake Reward
(edges_hard, nodes_hard) = self.postprocess((edges_logits, nodes_logits), 'hard_gumbel')
edges_hard, nodes_hard = torch.max(edges_hard, -1)[1], torch.max(nodes_hard, -1)[1]
mols = [self.data.matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True)
for e_, n_ in zip(edges_hard, nodes_hard)]
rewardF = torch.from_numpy(self.reward(mols)).to(self.device)
# Value loss
value_logit_real,_ = self.V(a_tensor, None, x_tensor, torch.sigmoid)
value_logit_fake,_ = self.V(edges_hat, None, nodes_hat, torch.sigmoid)
g_loss_value = torch.mean((value_logit_real - rewardR) ** 2 + (
value_logit_fake - rewardF) ** 2)
#rl_loss= -value_logit_fake
#f_loss = (torch.mean(features_real, 0) - torch.mean(features_fake, 0)) ** 2
# Backward and optimize.
g_loss = g_loss_fake + g_loss_value
self.reset_grad()
g_loss.backward(retain_graph=True)
self.g_optimizer.step()
R=[list(a[i].reshape(-1)) for i in range(self.batch_size)] #list(x[i]) +
F=[list(edges_hard[i].reshape(-1)) for i in range(self.batch_size)] #list(nodes_hard[i]) +
fd_bond_only = frdist(R, F)
R=[list(x[i]) + list(a[i].reshape(-1)) for i in range(self.batch_size)]
F=[list(nodes_hard[i]) + list(edges_hard[i].reshape(-1)) for i in range(self.batch_size)]
fd_bond_atom = frdist(R, F)
# Saving model checkpoint with lowest FD score
if "fd_bond_atom_min" not in locals():
fd_bond_atom_min = 30
if fd_bond_atom_min > fd_bond_atom:
if "lowest_ind" not in locals():
lowest_ind = 0
if os.path.exists(os.path.join(self.model_save_dir, '{}-G.ckpt'.format(lowest_ind))):
os.remove(os.path.join(self.model_save_dir, '{}-G.ckpt'.format(lowest_ind)))
os.remove(os.path.join(self.model_save_dir, '{}-D.ckpt'.format(lowest_ind)))
os.remove(os.path.join(self.model_save_dir, '{}-V.ckpt'.format(lowest_ind)))
lowest_ind = i+1
fd_bond_atom_min = fd_bond_atom
G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i+1))
D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i+1))
V_path = os.path.join(self.model_save_dir, '{}-V.ckpt'.format(i+1))
torch.save(self.G.state_dict(), G_path)
torch.save(self.D.state_dict(), D_path)
torch.save(self.V.state_dict(), V_path)
with open('p4_qgan_hg_15p/models/p4_qgan_hg_15p_red_weights.csv', 'a') as file:
writer = csv.writer(file)
writer.writerow([i+1] + list(gen_weights.detach().numpy()))
with open('p4_qgan_hg_15p/models/lowest_indices.csv', 'a') as file:
writer = csv.writer(file)
writer.writerow([i+1] + [fd_bond_atom])
# Logging.
loss['G/loss_fake'] = g_loss_fake.item()
loss['G/loss_value'] = g_loss_value.item()
loss['FD/fd_bond_only'] = fd_bond_only
loss['FD/fd_bond_atom'] = fd_bond_atom
print('g_loss:{}, d_loss:{}, fd_bond_only:{}, fd_bond_atom:{}'.format(g_loss.item(), \
d_loss.item(), fd_bond_only, fd_bond_atom))
# =================================================================================== #
# 4. Miscellaneous #
# =================================================================================== #
# Print out training information.
if (i+1) % self.log_step == 0:
et = time.time() - start_time
et = str(datetime.timedelta(seconds=et))[:-7]
log = "Elapsed [{}], Iteration [{}/{}]".format(et, i+1, self.num_iters)
# Log update
m0, m1 = all_scores(mols, self.data, norm=True) # 'mols' is output of Fake Reward
m0 = {k: np.array(v)[np.nonzero(v)].mean() for k, v in m0.items()}
m0.update(m1)
loss.update(m0)
for tag, value in loss.items():
log += ", {}: {:.4f}".format(tag, value)
print(log)
with open('p4_qgan_hg_15p/results/q8_metric_scores_log.csv', 'a') as file:
writer = csv.writer(file)
writer.writerow([i+1, et]+[torch.mean(rewardR).item(), torch.mean(rewardF).item()]+\
[value for tag, value in loss.items()])
if self.use_tensorboard or True:
for tag, value in loss.items():
self.logger.scalar_summary(tag, value, i+1)
# Save model checkpoints.
if (i+1) % self.model_save_step == 0:
G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i+1))
D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i+1))
V_path = os.path.join(self.model_save_dir, '{}-V.ckpt'.format(i+1))
torch.save(self.G.state_dict(), G_path)
torch.save(self.D.state_dict(), D_path)
torch.save(self.V.state_dict(), V_path)
with open('p4_qgan_hg_15p/models/q8_weights.csv', 'a') as file:
writer = csv.writer(file)
writer.writerow([i+1] + list(gen_weights.detach().numpy()))
print('Saved model checkpoints into {}...'.format(self.model_save_dir))
# Decay learning rates.
if (i+1) % self.lr_update_step == 0 and (i+1) > (self.num_iters - self.num_iters_decay):
g_lr -= (self.g_lr / float(self.num_iters_decay))
d_lr -= (self.d_lr / float(self.num_iters_decay))
self.update_lr(g_lr, d_lr)
print ('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Model configuration.
parser.add_argument('--z_dim', type=int, default=8, help='dimension of domain labels')
parser.add_argument('--g_conv_dim', default=[128], help='number of conv filters in the first layer of G')
parser.add_argument('--d_conv_dim', type=int, default=[[128, 64], 128, [128, 64]], help='number of conv filters in the first layer of D')
parser.add_argument('--g_repeat_num', type=int, default=6, help='number of residual blocks in G')
parser.add_argument('--d_repeat_num', type=int, default=6, help='number of strided conv layers in D')
parser.add_argument('--lambda_cls', type=float, default=1, help='weight for domain classification loss')
parser.add_argument('--lambda_rec', type=float, default=10, help='weight for reconstruction loss')
parser.add_argument('--lambda_gp', type=float, default=10, help='weight for gradient penalty')
parser.add_argument('--post_method', type=str, default='softmax', choices=['softmax', 'soft_gumbel', 'hard_gumbel'])
# Training configuration.
parser.add_argument('--batch_size', type=int, default=16, help='mini-batch size')
parser.add_argument('--num_iters', type=int, default=5000, help='number of total iterations for training D')
parser.add_argument('--num_iters_decay', type=int, default=2500, help='number of iterations for decaying lr')
parser.add_argument('--g_lr', type=float, default=0.0001, help='learning rate for G')
parser.add_argument('--d_lr', type=float, default=0.0001, help='learning rate for D')
parser.add_argument('--dropout', type=float, default=0., help='dropout rate')
parser.add_argument('--n_critic', type=int, default=5, help='number of D updates per each G update')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for Adam optimizer')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam optimizer')
parser.add_argument('--resume_iters', type=int, default=None, help='resume training from this step')
# Test configuration.
parser.add_argument('--test_iters', type=int, default=5000, help='test model from this step')
# Miscellaneous.
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'])
parser.add_argument('--use_tensorboard', type=str2bool, default=False)
# Directories.
parser.add_argument('--mol_data_dir', type=str, default='data/gdb9_9nodes.sparsedataset')
parser.add_argument('--log_dir', type=str, default='p4_qgan_hg_15p/logs')
parser.add_argument('--model_save_dir', type=str, default='p4_qgan_hg_15p/models')
parser.add_argument('--sample_dir', type=str, default='p4_qgan_hg_15p/samples')
parser.add_argument('--result_dir', type=str, default='p4_qgan_hg_15p/results')
# Step size.
parser.add_argument('--log_step', type=int, default=10)
parser.add_argument('--sample_step', type=int, default=1000)
parser.add_argument('--model_save_step', type=int, default=1000)
parser.add_argument('--lr_update_step', type=int, default=500)
config = parser.parse_args()
print(config)
main(config)