forked from LSH9832/edgeyolo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch_detect.py
199 lines (159 loc) · 6.71 KB
/
batch_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from multiprocessing import Process, Manager, freeze_support
from datetime import datetime as date
from loguru import logger
from time import time
from glob import glob
import torch.cuda
import argparse
import cv2
import os
def get_args():
parser = argparse.ArgumentParser("EdgeYOLO Detect parser")
parser.add_argument("-w", "--weights", type=str, default="edgeyolo_coco.pth", help="weight file")
parser.add_argument("-c", "--conf-thres", type=float, default=0.25, help="confidence threshold")
parser.add_argument("-n", "--nms-thres", type=float, default=0.45, help="nms threshold")
parser.add_argument("--fp16", action="store_true", help="fp16")
parser.add_argument("--no-fuse", action="store_true", help="do not fuse model")
parser.add_argument("--input-size", type=int, nargs="+", default=[640, 640], help="input size: [height, width]")
parser.add_argument("-s", "--source", type=str, default="E:/videos/test.avi", help="video source or image dir")
parser.add_argument("--trt", action="store_true", help="is trt model")
parser.add_argument("--legacy", action="store_true", help="if img /= 255 while training, add this command.")
parser.add_argument("--use-decoder", action="store_true", help="support original yolox model v0.2.0")
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
parser.add_argument("--no-label", action="store_true", help="do not draw label")
parser.add_argument("--save-dir", type=str, default="./imgs/coco", help="image result save dir")
parser.add_argument("--fps", type=int, default=99999, help="max fps")
return parser.parse_args()
def inference(msg, results, args):
from edgeyolo.detect import Detector, TRTDetector
detector = TRTDetector if args.trt else Detector
detect = detector(
weight_file=args.weights,
conf_thres=args.conf_thres,
nms_thres=args.nms_thres,
input_size=args.input_size,
fuse=not args.no_fuse,
fp16=args.fp16,
use_decoder=args.use_decoder
)
if args.trt:
args.batch_size = detect.batch_size
# source loader setup
if os.path.isdir(args.source):
class DirCapture:
def __init__(self, dir_name):
self.imgs = []
for img_type in ["jpg", "png", "jpeg", "bmp", "webp"]:
self.imgs += sorted(glob(os.path.join(dir_name, f"*.{img_type}")))
def isOpened(self):
return bool(len(self.imgs))
def read(self):
print(self.imgs[0])
now_img = cv2.imread(self.imgs[0])
self.imgs = self.imgs[1:]
return now_img is not None, now_img
source = DirCapture(args.source)
delay = 0
else:
source = cv2.VideoCapture(int(args.source) if args.source.isdigit() else args.source)
delay = 1
msg["class_names"] = detect.class_names
msg["delay"] = delay
success = True
while source.isOpened() and success and not msg["end"]:
frames = []
for _ in range(args.batch_size):
if msg["end"]:
frames = []
break
success, frame = source.read()
if not success:
if not len(frames):
cv2.destroyAllWindows()
break
else:
while len(frames) < args.batch_size:
frames.append(frames[-1])
else:
frames.append(frame)
if not len(frames):
break
results.put((frames, [r.cpu() for r in detect(frames, args.legacy)]))
msg["end"] = True
torch.cuda.empty_cache()
msg["end_count"] += 1
def draw_imgs(msg, results, all_imgs, args):
from edgeyolo.detect import draw
while "class_names" not in msg:
pass
class_names = msg["class_names"]
while not msg["end"] or not results.empty():
# print(len(msg["results"]))
if not results.empty():
for img in draw(*results.get(), class_names, 2, draw_label=not args.no_label):
all_imgs.put(img)
# print(all_imgs.empty())
torch.cuda.empty_cache()
msg["end_count"] += 1
def show(msg, all_imgs, args, pid):
# import platform
while "delay" not in msg:
pass
delay = msg["delay"]
exist_save_dir = os.path.isdir(args.save_dir)
all_dt = []
t0 = time()
while not msg["end"] or not all_imgs.empty():
if not all_imgs.empty():
img = all_imgs.get()
# print(img.shape)
while time() - t0 < 1. / args.fps - 0.0004:
pass
dt = time() - t0
all_dt.append(dt)
if len(all_dt) > 300:
all_dt = all_dt[-300:]
mean_dt = sum(all_dt) / len(all_dt) * 1000
print(f"\r{dt * 1000:.1f}ms --> {1. / dt:.1f}FPS, "
f"average:{mean_dt:.1f}ms --> {1000. / mean_dt:.1f}FPS", end=" ")
t0 = time()
cv2.imshow("EdgeYOLO result", img)
key = cv2.waitKey(delay)
if key in [ord("q"), 27]:
msg["end"] = True
cv2.destroyAllWindows()
break
elif key == ord(" "):
delay = 1 - delay
elif key == ord("s"):
if not exist_save_dir:
os.makedirs(args.save_dir, exist_ok=True)
file_name = f"{str(date.now()).split('.')[0].replace(':', '').replace('-', '').replace(' ', '')}.jpg"
cv2.imwrite(os.path.join(args.save_dir, file_name), img)
logger.info(f"image saved to {file_name}.")
print()
print()
torch.cuda.empty_cache()
msg["end_count"] += 1
while not msg["end_count"] == 3:
pass
# if platform.system().lower() == "windows":
# os.system(F"taskkill /F /PID {pid}")
# else:
# os.system(f"kill -9 {pid}")
def main():
args = get_args()
shared_data = Manager().dict()
shared_data["end"] = False
shared_data["end_count"] = 0
results = Manager().Queue()
all_imgs = Manager().Queue()
processes = [Process(target=inference, args=(shared_data, results, args)),
Process(target=draw_imgs, args=(shared_data, results, all_imgs, args)),
Process(target=show, args=(shared_data, all_imgs, args, os.getpid()))]
[process.start() for process in processes]
torch.cuda.empty_cache()
[process.join() for process in processes]
if __name__ == '__main__':
freeze_support()
main()