-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
119 lines (87 loc) · 4.5 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import sys
import logging
import models
from utils import *
from args import parse_train_args
from datasets import make_reproducible_dataset
def loss_compute(args, model, criterion, outputs, targets):
if args.loss in [CROSS_ENTROPY_TAG, LABEL_SMOOTHING_TAG, LABEL_RELAXATION_TAG]:
loss = criterion(outputs[0], targets)
elif args.loss == MSE_TAG:
loss = criterion(outputs[0], nn.functional.one_hot(targets).type(torch.FloatTensor).to(args.device))
# Now decide whether to add weight decay on last weights and last features
if args.sep_decay:
# Find features and weights
features = outputs[1]
w = model.fc.weight
b = model.fc.bias
lamb = args.weight_decay / 2
lamb_feature = args.feature_decay_rate / 2
loss += lamb * (torch.sum(w ** 2) + torch.sum(b ** 2)) + lamb_feature * torch.sum(features ** 2)
return loss
def trainer(args, model, trainloader, epoch_id, criterion, optimizer, scheduler, logfile, num_classes):
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
print_and_save('\nTraining Epoch: [%d | %d] LR: %f' % (epoch_id + 1, args.epochs, scheduler.get_last_lr()[-1]),
logfile)
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(args.device), targets.to(args.device)
model.train()
outputs = model(inputs)
if args.sep_decay:
loss = loss_compute(args, model, criterion, outputs, targets)
else:
if args.loss in [CROSS_ENTROPY_TAG, LABEL_SMOOTHING_TAG, LABEL_RELAXATION_TAG]:
loss = criterion(outputs[0], targets)
elif args.loss == MSE_TAG:
loss = criterion(outputs[0],
nn.functional.one_hot(targets, num_classes).type(torch.FloatTensor).to(args.device))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure accuracy and record loss
model.eval()
outputs = model(inputs)
prec1, prec5 = compute_accuracy(outputs[0].detach().data, targets.detach().data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
if batch_idx % 10 == 0:
print_and_save('[epoch: %d] (%d/%d) | Loss: %.4f | top1: %.4f | top5: %.4f ' %
(epoch_id + 1, batch_idx + 1, len(trainloader), losses.avg, top1.avg, top5.avg), logfile)
scheduler.step()
return losses.avg
def train(args, model, trainloader, num_classes):
criterion = make_criterion(args, num_classes)
optimizer = make_optimizer(args, model)
scheduler = make_scheduler(args, optimizer)
logfile = open('%s/train_log.txt' % (args.save_path), 'w')
if os.path.exists(
os.path.join(args.save_path, "epoch_" + str(args.epochs).zfill(3) + ".pth")) and not args.force_retrain:
logging.info("Model already exists, loading this model...")
model.load_state_dict(torch.load(os.path.join(args.save_path, "epoch_" + str(args.epochs).zfill(3) + ".pth")))
else:
print_and_save('# of model parameters: ' + str(count_network_parameters(model)), logfile)
print_and_save('--------------------- Training -------------------------------', logfile)
for epoch_id in range(args.epochs):
trainer(args, model, trainloader, epoch_id, criterion, optimizer, scheduler, logfile, num_classes)
torch.save(model.state_dict(), args.save_path + "/epoch_" + str(epoch_id + 1).zfill(3) + ".pth")
logfile.close()
def main():
args = parse_train_args()
set_seed(seed=args.seed)
if args.optimizer == 'LBFGS':
sys.exit('Support for training with 1st order methods!')
device = torch.device("cuda:" + str(args.gpu_id) if torch.cuda.is_available() else "cpu")
args.device = device
trainloader, _, _, num_classes = make_reproducible_dataset(args, args.save_path, label_noise=args.label_noise)
if args.model == "MLP":
model = models.__dict__[args.model](hidden=args.width, depth=args.depth, fc_bias=args.bias,
num_classes=num_classes).to(device)
else:
model = models.__dict__[args.model](num_classes=num_classes, fc_bias=args.bias, ETF_fc=args.ETF_fc,
fixdim=args.fixdim, SOTA=args.SOTA).to(device)
train(args, model, trainloader, num_classes)
if __name__ == "__main__":
main()