-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcssl.py
274 lines (232 loc) · 12 KB
/
cssl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
### Extension note: ###
#
# Code follows the implementation of FixMatch and co. from the origin repository and replaces necessary parts to
# implement the new baseline as described in our paper.
#
### Copyright note from original code: ###
#
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###
import functools
import os
import numpy as np
import tensorflow.compat.v1 as tf
from absl import app
from absl import flags
from tqdm import trange
from cta.cta_remixmatch import CTAReMixMatch
from libml import data, utils, augment, ctaugment, layers
from tensorflow.python.keras.losses import kullback_leibler_divergence
from libml.utils import EasyDict
FLAGS = flags.FLAGS
class AugmentPoolCTACutOut(augment.AugmentPoolCTA):
@staticmethod
def numpy_apply_policies(arglist):
x, cta, probe = arglist
if x.ndim == 3:
assert probe
policy = cta.policy(probe=True)
return dict(policy=policy,
probe=ctaugment.apply(x, policy),
image=x)
assert not probe
cutout_policy = lambda: cta.policy(probe=False) + [ctaugment.OP('cutout', (1,))]
return dict(image=np.stack([x[0]] + [ctaugment.apply(y, cutout_policy()) for y in x[1:]]).astype('f'))
class CSSL(CTAReMixMatch):
"""
Credal Self-Supervised Learning for image classification embedded into the FixMatch framework.
"""
AUGMENT_POOL_CLASS = AugmentPoolCTACutOut
@staticmethod
def cssl_train(obj, train_nimg, report_nimg):
"""
Basic training procedure shared by most of the algorithms. Static method that allows for re-usage regardless
the concrete superclass implementation.
:param train_nimg: Number of training images
:param report_nimg: Number of images for which results are reported (epoch-wise)
"""
if FLAGS.eval_ckpt:
obj.eval_checkpoint(None)
return
batch = FLAGS.batch
train_labeled = obj.dataset.train_labeled.repeat().shuffle(FLAGS.shuffle).parse().augment()
train_labeled = train_labeled.batch(batch).prefetch(
tf.data.experimental.AUTOTUNE).make_one_shot_iterator().get_next()
train_unlabeled = obj.dataset.train_unlabeled.repeat().shuffle(FLAGS.shuffle).parse().augment()
train_unlabeled = train_unlabeled.batch(batch * obj.params['uratio']).prefetch(tf.data.experimental.AUTOTUNE)
train_unlabeled = train_unlabeled.make_one_shot_iterator().get_next()
scaffold = tf.train.Scaffold(saver=tf.train.Saver(max_to_keep=FLAGS.keep_ckpt,
pad_step_number=10))
with tf.Session(config=utils.get_config()) as sess:
obj.session = sess
obj.cache_eval()
with tf.train.MonitoredTrainingSession(
scaffold=scaffold,
checkpoint_dir=obj.checkpoint_dir,
config=utils.get_config(),
save_checkpoint_steps=FLAGS.save_kimg << 10,
save_summaries_steps=report_nimg - batch) as train_session:
obj.session = train_session._tf_sess()
gen_labeled = obj.gen_labeled_fn(train_labeled)
gen_unlabeled = obj.gen_unlabeled_fn(train_unlabeled)
obj.tmp.step = obj.session.run(obj.step)
while obj.tmp.step < train_nimg:
loop = trange(obj.tmp.step % report_nimg, report_nimg, batch,
leave=False, unit='img', unit_scale=batch,
desc='Epoch %d/%d' % (1 + (obj.tmp.step // report_nimg), train_nimg // report_nimg))
for _ in loop:
obj.train_step(train_session, gen_labeled, gen_unlabeled)
while obj.tmp.print_queue:
loop.write(obj.tmp.print_queue.pop(0))
while obj.tmp.print_queue:
print(obj.tmp.print_queue.pop(0))
def train(self, train_nimg, report_nimg):
CSSL.cssl_train(self, train_nimg, report_nimg)
@staticmethod
def guess_label(p_model_y, p_data, p_model, **kwargs):
"""
Distribution alignment as discussed in the paper's Section 3.4.
:param p_model_y: Model prediction
:param p_data: Data prior
:param p_model: Historical predictions
:param kwargs: Ignored (for compatibility reasons)
:return: Returns the aligned prediction and the original prediction as dictionary
"""
del kwargs
p_ratio = (1e-6 + p_data) / (1e-6 + p_model)
p_target = p_model_y * p_ratio
p_target /= tf.reduce_sum(p_target, axis=1, keep_dims=True)
return EasyDict(p_target=p_target, p_model=p_model_y)
@staticmethod
def determine_imprecisiation(guess, alpha_bound):
guess_p_target = tf.stop_gradient(guess.p_target)
max_prob = tf.math.reduce_max(guess_p_target, axis=-1)
relax_alpha = tf.ones_like(max_prob) - max_prob
relax_alpha = tf.clip_by_value(relax_alpha, alpha_bound, 1.)
tf.summary.scalar('monitors/alpha', tf.reduce_mean(relax_alpha))
return relax_alpha
@staticmethod
def determine_label_relaxation_loss(logits_strong, pseudo_labels, relax_alpha):
pred_softmax = tf.nn.softmax(logits_strong)
sum_y_hat_prime = tf.reduce_sum((1. - pseudo_labels) * pred_softmax, axis=-1)
y_pred_hat = tf.expand_dims(relax_alpha, axis=-1) * pred_softmax / (
tf.expand_dims(sum_y_hat_prime, axis=-1) + 1e-7)
y_true_credal = tf.where(tf.greater(pseudo_labels, 0.1),
tf.ones_like(pseudo_labels) - tf.expand_dims(relax_alpha, axis=-1), y_pred_hat)
divergence = kullback_leibler_divergence(y_true_credal, pred_softmax)
preds = tf.reduce_sum(pred_softmax * pseudo_labels, axis=-1)
return tf.where(tf.greater_equal(preds, 1. - relax_alpha), tf.zeros_like(divergence),
divergence)
@staticmethod
def cssl_model(obj, batch, lr, wd, wu, confidence, alpha_bound, uratio, ema=0.999, dbuf=128, **kwargs):
hwc = [obj.dataset.height, obj.dataset.width, obj.dataset.colors]
xt_in = tf.placeholder(tf.float32, [batch] + hwc, 'xt') # Training labeled
x_in = tf.placeholder(tf.float32, [None] + hwc, 'x') # Eval images
y_in = tf.placeholder(tf.float32, [batch * uratio, 2] + hwc, 'y') # Training unlabeled (weak, strong)
l_in = tf.placeholder(tf.int32, [batch], 'labels') # Labels
lrate = tf.clip_by_value(tf.to_float(obj.step) / (FLAGS.train_kimg << 10), 0, 1)
lr *= tf.cos(lrate * (7 * np.pi) / (2 * 8))
tf.summary.scalar('monitors/lr', lr)
# Compute logits for xt_in and y_in
classifier = lambda x, **kw: obj.classifier(x, **kw, **kwargs).logits
skip_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
x = utils.interleave(tf.concat([xt_in, y_in[:, 0], y_in[:, 1]], 0), 2 * uratio + 1)
logits = utils.para_cat(lambda x: classifier(x, training=True), x)
logits = utils.de_interleave(logits, 2 * uratio + 1)
post_ops = [v for v in tf.get_collection(tf.GraphKeys.UPDATE_OPS) if v not in skip_ops]
logits_x = logits[:batch]
logits_weak, logits_strong = tf.split(logits[batch:], 2)
del logits, skip_ops
# Labeled cross-entropy
loss_xe = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=l_in, logits=logits_x)
loss_xe = tf.reduce_mean(loss_xe)
tf.summary.scalar('losses/xe', loss_xe)
# Pseudo-labels generation: First, determine reference class, followed by the imprecisiation degree alpha
orig_pseudo_labels = tf.stop_gradient(tf.nn.softmax(logits_weak))
pseudo_labels = tf.one_hot(tf.argmax(orig_pseudo_labels, axis=1), depth=tf.shape(orig_pseudo_labels)[1])
# Maintain alignment moving averages
p_model = layers.PMovingAverage('p_model', obj.nclass, dbuf)
p_target = layers.PMovingAverage('p_target', obj.nclass, dbuf)
p_data = layers.PData(obj.dataset)
p_data_tf = p_data()
p_model_tf = p_model()
guess = CSSL.guess_label(orig_pseudo_labels, p_data_tf, p_model_tf)
# Determine instance-wise imprecisiation (relaxation) alpha
relax_alpha = CSSL.determine_imprecisiation(guess, alpha_bound)
# Calculate label relaxation loss
loss_xeu = CSSL.determine_label_relaxation_loss(logits_strong, pseudo_labels, relax_alpha)
# Optionally, filter out instances by confidence
pseudo_mask = tf.to_float(tf.reduce_max(orig_pseudo_labels, axis=1) >= confidence)
tf.summary.scalar('monitors/mask', tf.reduce_mean(pseudo_mask))
loss_xeu = tf.reduce_mean(loss_xeu * pseudo_mask)
tf.summary.scalar('losses/xeu', loss_xeu)
obj.distribution_summary(p_data(), p_model(), p_target())
# L2 regularization
loss_wd = sum(tf.nn.l2_loss(v) for v in utils.model_vars('classify') if 'kernel' in v.name)
tf.summary.scalar('losses/wd', loss_wd)
# Apply EMA
ema = tf.train.ExponentialMovingAverage(decay=ema)
ema_op = ema.apply(utils.model_vars())
ema_getter = functools.partial(utils.getter_ema, ema)
post_ops.extend([ema_op,
p_model.update(guess.p_model),
p_target.update(guess.p_target)])
train_op = tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True).minimize(
loss_xe + wu * loss_xeu + wd * loss_wd, colocate_gradients_with_ops=True)
with tf.control_dependencies([train_op]):
train_op = tf.group(*post_ops)
return utils.EasyDict(
xt=xt_in, x=x_in, y=y_in, label=l_in, train_op=train_op,
classify_raw=tf.nn.softmax(classifier(x_in, training=False)), # No EMA, for debugging.
classify_op=tf.nn.softmax(classifier(x_in, getter=ema_getter, training=False)))
def model(self, batch, lr, wd, wu, confidence, alpha_bound, uratio, ema=0.999, dbuf=128, **kwargs):
return CSSL.cssl_model(self, batch, lr, wd, wu, confidence, alpha_bound, uratio, ema, dbuf, **kwargs)
def main(argv):
utils.setup_main()
del argv
dataset = data.PAIR_DATASETS()[FLAGS.dataset]()
log_width = utils.ilog2(dataset.width)
model = CSSL(
os.path.join(FLAGS.train_dir, dataset.name, CSSL.cta_name()),
dataset,
lr=FLAGS.lr,
wd=FLAGS.wd,
arch=FLAGS.arch,
batch=FLAGS.batch,
nclass=dataset.nclass,
wu=FLAGS.wu,
confidence=FLAGS.confidence,
alpha_bound=FLAGS.alpha_bound,
uratio=FLAGS.uratio,
scales=FLAGS.scales or (log_width - 2),
filters=FLAGS.filters,
repeat=FLAGS.repeat)
model.train(FLAGS.train_kimg << 10, FLAGS.report_kimg << 10)
if __name__ == '__main__':
utils.setup_tf()
flags.DEFINE_float('confidence', 0.0, 'Confidence threshold.')
flags.DEFINE_float('alpha_bound', 0.0, 'Lower bound for alpha values.')
flags.DEFINE_float('wd', 0.0005, 'Weight decay.')
flags.DEFINE_float('wu', 1, 'Pseudo label loss weight.')
flags.DEFINE_integer('filters', 32, 'Filter size of convolutions.')
flags.DEFINE_integer('repeat', 4, 'Number of residual layers per stage.')
flags.DEFINE_integer('scales', 0, 'Number of 2x2 downscalings in the classifier.')
flags.DEFINE_integer('uratio', 7, 'Unlabeled batch size ratio.')
FLAGS.set_default('augment', 'd.d.d')
FLAGS.set_default('dataset', 'cifar10.3@250-1')
FLAGS.set_default('batch', 64)
FLAGS.set_default('lr', 0.03)
FLAGS.set_default('train_kimg', 1 << 16)
app.run(main)