-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patholympics.R
267 lines (242 loc) · 11.8 KB
/
olympics.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
## library packages
library(tidyverse)
library(nbastatR)
library(data.table)
## define teams then combine
## 2004 team: Bronze
team_2004 <- c(
"Carmelo Anthony", "Carlos Boozer", "Tim Duncan", "Allen Iverson"
,"LeBron James", "Richard Jefferson", "Stephon Marbury", "Shawn Marion"
,"Lamar Odom", "Emeka Okafor", "Amar'e Stoudemire", "Dwyane Wade") %>% data.frame() %>%
select(player = 1) %>%
mutate(player = as.character(player),
year = 2004)
## 2008 team: Gold
team_2008 <- c(
"Deron Williams", "Dwyane Wade", "Michael Redd", "Tayshaun Prince"
,"Chris Paul", "Jason Kidd", "LeBron James", "Dwight Howard"
,"Kobe Bryant", "Chris Bosh", "Carlos Boozer", "Carmelo Anthony") %>% data.frame() %>%
select(player = 1) %>%
mutate(player = as.character(player),
year = 2008)
## 2012 team: Gold
team_2012 <- c(
"Carmelo Anthony", "Kobe Bryant", "Tyson Chandler", "Anthony Davis"
,"Kevin Durant", "James Harden", "Andre Iguodala", "LeBron James"
,"Kevin Love", "Chris Paul", "Russell Westbrook", "Deron Williams") %>% data.frame() %>%
select(player = 1) %>%
mutate(player = as.character(player),
year = 2012)
## 2016 team: Gold
team_2016 <- c(
"Carmelo Anthony", "Harrison Barnes", "Jimmy Butler", "DeMarcus Cousins"
,"DeMar DeRozan", "Kevin Durant", "Paul George", "Draymond Green"
,"Kyrie Irving", "DeAndre Jordan", "Kyle Lowry", "Klay Thompson") %>% data.frame() %>%
select(player = 1) %>%
mutate(player = as.character(player),
year = 2016)
## combine teams into olympic_teams variable
olympic_teams <- bind_rows(team_2004, team_2008, team_2012, team_2016) %>% data.frame() %>%
mutate(olympic_year = 1)
## remove for space
rm(list= ls()[(ls() != 'olympic_teams')])
## create empty df for loop output of player stats
all_players_stats <- data.frame()
## begin loop
## loop 1: teams
for (team in olympic_teams$year %>% unique()){
print(team)
team_roster <- olympic_teams %>% filter(year == team)
## loop 2: players
for (p_id in team_roster$player %>% unique()){
# print player name getting stats for
print(paste('Getting stats for', p_id, sep = ' '))
## get player stats
all_stats <- suppressWarnings(
suppressMessages(
players_careers(players = p_id
,return_message = FALSE
,assign_to_environment = T))) %>% data.frame()
## extract regular season data
reg_season <- dataPlayerSeasonTotalsRegularSeason %>% data.frame()
## extract postseason data
post_season <- dataPlayerSeasonTotalsPostSeason %>% data.frame()
## add if statement in case player did not have postseason stats
if(sum(ls() %in% 'dataPlayerSeasonTotalsPostSeason') > 1){
post_season <- dataPlayerSeasonTotalsPostSeason %>% data.frame()
}
## combine player reg season & playoff stats
player_season_stats <- bind_rows(reg_season, post_season)
## add individual player to final output
all_players_stats <- bind_rows(all_players_stats, player_season_stats) %>% distinct()
## clear memory for space
rm(list= ls()[!(ls() %in% c('all_players_stats','olympic_teams', 'team_roster'))])
} ## end loop 1
} ## end loop 2
## clean data
rs <- all_players_stats %>%
filter(slugSeasonType == 'RS') %>% # remove postseason stats
mutate(season_start = substr(slugSeason, 1, 4)) %>%
group_by(namePlayer, slugSeason, slugSeasonType) %>%
mutate(teams_played_for = 1:n()) %>% ungroup() %>%
group_by(namePlayer, slugSeasonType, slugSeason) %>%
mutate(max_teams = max(teams_played_for)) %>% ungroup() %>%
filter(teams_played_for == max_teams) %>%
select(-teams_played_for, -max_teams, -urlNBAAPI) %>%
## pts, rbs, asts, 2pg fgp, 3p fgp, fgp, ft rate, minutes per game
group_by(namePlayer) %>%
mutate(career_pts = sum(ptsTotals, na.rm = TRUE),
career_rbs = sum(trebTotals, na.rm = TRUE),
career_asts = sum(astTotals, na.rm = TRUE),
career_2pfga = sum(fg2aTotals, na.rm = TRUE),
career_2pfgm = sum(fg2mTotals, na.rm = TRUE),
career_3pfga = sum(fg3aTotals, na.rm = TRUE),
career_3pfgm = sum(fg3mTotals, na.rm = TRUE),
career_fga = sum(fgaTotals, na.rm = TRUE),
career_fgm = sum(fgmTotals, na.rm = TRUE),
career_fta = sum(ftaTotals, na.rm = TRUE),
career_ftm = sum(ftmTotals, na.rm = TRUE),
career_mins = sum(minutesTotals, na.rm = TRUE),
cg = sum(gp, na.rm = TRUE)) %>% ungroup() %>%
data.frame() %>%
merge(olympic_teams,
by.x = c('namePlayer', 'season_start'),
by.y = c('player', 'year'),
all.x = TRUE) %>%
mutate(olympic_year = as.numeric(!is.na(olympic_year))) %>%
## season stats
mutate(season_pts = ptsTotals / gp,
season_rbs = trebTotals / gp,
season_asts = astTotals / gp,
season_2p_pct = fg2mTotals / fg2aTotals,
season_3p_pct = fg3mTotals / fg3aTotals,
season_fg_pct = fgmTotals / fgaTotals,
season_ftr = ftaTotals / fgaTotals,
season_mpg = minutesTotals / gp) %>%
## career stats
mutate(career_pts = career_pts / cg,
career_rbs = career_rbs / cg,
career_asts = career_asts / cg,
career_2p_pct = career_2pfgm / career_2pfga,
career_3p_pct = career_3pfgm / career_3pfga,
career_fg_pct = career_fgm / career_fga,
career_ftr = career_fta / career_fga,
career_mpg = career_mins / cg) %>%
## above avg stats
mutate(pts = as.numeric(career_pts <= season_pts),
rbs = as.numeric(career_rbs <= season_rbs),
asts = as.numeric(career_asts <= season_asts),
fg_2 = as.numeric(career_2p_pct <= season_2p_pct),
fg_3 = as.numeric(career_3p_pct <= season_3p_pct),
fg = as.numeric(career_fg_pct <= season_fg_pct),
ftr = as.numeric(career_ftr <= season_ftr),
mpg = as.numeric(career_mpg <= season_mpg)) %>%
mutate(season_3p_pct = ifelse(season_3p_pct == 'Inf' |
is.na(season_3p_pct), 0,
season_3p_pct),
olympic_team = ifelse(olympic_year == 1,
substr(slugSeason, 1, 4), NA))
## all seasons dataset
all_seasons_data <- rs
all_seasons_data$above_avg_stats <- rowSums(all_seasons_data[, 62:69], na.rm = TRUE)
all_seasons_data$above_avg_season <- as.numeric(all_seasons_data$above_avg_stats >= 5)
# all_seasons_data$olympic_team <- ifelse(all_seasons_data$olympic_year == 1,
# substr(all_seasons_data$slugSeason, 1, 4), NA)
## olympic years only dataset
olympic_seasons <- rs %>% filter(olympic_year == 1)
olympic_seasons$above_avg_stats <- rowSums(olympic_seasons[, 62:69], na.rm = TRUE)
olympic_seasons$above_avg_season <- as.numeric(olympic_seasons$above_avg_stats >= 5)
# olympic_seasons$olympic_team <- ifelse(olympic_seasons$olympic_year == 1,
# substr(olympic_seasons$slugSeason, 1, 4), NA)
## loop for overall understanding of Olympic year performance vs career averages
## columns to loop through
stat_values <- names(olympic_seasons)[62:69]
for (sv in 1:length(stat_values)){
stat <- stat_values[sv]
df <- table(olympic_seasons[,stat]) %>% data.frame()
numerator <- df %>% filter(Var1 == 1) %>% select(Freq)
denominator <- df %>% summarise(sum(Freq))
pct <- round(numerator / denominator * 100, 1) %>% select(Freq) %>% unique()
print(paste(pct
,'% of the time players have above average '
,stringr::str_to_upper(stat)
,' after the Olympic Games.'
,sep = ''))
rm(pct)
}
df <- table(olympic_seasons$above_avg_season) %>% data.frame()
numerator <- df %>% filter(Var1 == 1) %>% select(Freq)
denominator <- df %>% summarise(sum(Freq))
pct <- round(numerator / denominator * 100, 1) %>% select(Freq) %>% unique()
print(paste(pct
,'% of the time players have an above average season overall after the Olympic Games.',
sep = ''))
## season stats
season <- rs %>%
select(namePlayer, slugSeason, olympic_year, olympic_team, slugTeam,
season_pts, season_rbs, season_asts, season_2p_pct, season_3p_pct, season_fg_pct, season_ftr, season_mpg) %>%
gather(key = 'stat_name', 'stat_value', -namePlayer, -slugSeason, -olympic_year, -olympic_team, -slugTeam) %>%
arrange(namePlayer)
## career stats
career <- rs %>%
select(namePlayer, slugSeason, olympic_year, olympic_team, slugTeam,
career_pts, career_rbs, career_asts, career_2p_pct, career_3p_pct, career_fg_pct, career_ftr, career_mpg) %>%
gather(key = 'stat_name_c', 'stat_value_c', -namePlayer, -slugSeason, -olympic_year, -olympic_team, -slugTeam) %>%
arrange(namePlayer)
## stat comparison
stat_comparison <- suppressWarnings(season %>%
cbind(stat_value_c = career$stat_value_c) %>%
mutate(above_avg_stat = as.numeric(stat_value >= stat_value_c),
stat2 = stat_name) %>%
# separate(col = stat2, into = c('x', NA), sep = '_')
separate(stat2, c("stat1", "stat2"), sep = "[_]") %>%
select(-stat1) %>%
rename(statistic = stat2))
## create stat comparisons for olympic years (totals) vs career averages
olympic_year_stat_comparisons <- all_seasons_data %>%
filter(olympic_year == 1) %>%
group_by(namePlayer) %>%
summarise(ptsTotals = sum(ptsTotals, na.rm = TRUE),
trebTotals = sum(trebTotals, na.rm = TRUE),
astTotals = sum(astTotals, na.rm = TRUE),
fg2aTotals = sum(fg2aTotals, na.rm = TRUE),
fg2mTotals = sum(fg2mTotals, na.rm = TRUE),
fg3aTotals = sum(fg3aTotals, na.rm = TRUE),
fg3mTotals = sum(fg3mTotals, na.rm = TRUE),
fgaTotals = sum(fgaTotals, na.rm = TRUE),
fgmTotals = sum(fgmTotals, na.rm = TRUE),
ftaTotals = sum(ftaTotals, na.rm = TRUE),
ftmTotals = sum(ftmTotals, na.rm = TRUE),
minutesTotals = sum(minutesTotals, na.rm = TRUE),
gp = sum(gp, na.rm = TRUE)) %>%
mutate(season_pts = ptsTotals / gp,
season_rbs = trebTotals / gp,
season_asts = astTotals / gp,
season_2p_pct = fg2mTotals / fg2aTotals,
season_3p_pct = fg3mTotals / fg3aTotals,
season_fg_pct = fgmTotals / fgaTotals,
season_ftr = ftaTotals / fgaTotals,
season_mpg = minutesTotals / gp) %>%
arrange(namePlayer) %>%
select(namePlayer, season_pts:season_mpg) %>%
data.frame()
## player career averages
player_careers <- all_seasons_data %>%
select(namePlayer, career_pts, career_rbs, career_asts,
career_2p_pct, career_3p_pct, career_fg_pct,
career_ftr, career_mpg) %>% distinct()
## add player career averages to olympic_year_stat_comparisons
olympic_year_stat_comparisons <- suppressWarnings(olympic_year_stat_comparisons %>%
merge(player_careers, by = 'namePlayer') %>%
gather(key = 'stat_name', value = 'stat_value', -namePlayer) %>%
separate(stat_name, c('time', 'stat'), sep = '_') %>%
spread(time, stat_value) %>%
mutate(better_after_olympics = as.numeric(season > career)) %>%
merge(olympic_teams %>% group_by(player) %>%
summarise(olympic_teams = toString(year)),
by.x = 'namePlayer', by.y = 'player'))
## write output files for tableau
fwrite(stat_comparison, "Desktop/stat_comparison.csv")
fwrite(all_seasons_data, "Desktop/all_seasons_data.csv")
fwrite(olympic_seasons, "Desktop/olympic_seasons_data.csv")
fwrite(olympic_year_stat_comparisons, "Desktop/olympic_year_stat_comparisons.csv")