-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
97 lines (89 loc) · 3.16 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from torch_geometric.nn import GCN, GAT, GraphSAGE, GIN
from src.efficient_kan import KAN
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.utils import spmm
class KANGNN(torch.nn.Module):
def __init__(
self,
in_feat,
hidden_feat,
out_feat,
use_bias=False,
input_embed=False,
kan_layers=2, # Number of KAN layers
mp_layers=3, # Number of message passing layers
):
super().__init__()
self.input_embed = input_embed
self.module_list = nn.ModuleList()
# First layers
if self.input_embed:
self.lin_in = nn.Linear(in_feat, hidden_feat, bias=use_bias)
if kan_layers == 2:
self.module_list.append(KAN([hidden_feat, hidden_feat, hidden_feat]))
elif kan_layers == 1:
self.module_list.append(KAN([hidden_feat, hidden_feat]))
else:
raise ValueError("Invalid number of KAN layers")
else:
if kan_layers == 2:
self.module_list.append(KAN([in_feat, hidden_feat, hidden_feat]))
elif kan_layers == 1:
self.module_list.append(KAN([in_feat, hidden_feat]))
else:
raise ValueError("Invalid number of KAN layers")
# Intermediate MP layers
if mp_layers > 2:
for _ in range(mp_layers - 2):
if kan_layers == 2:
self.module_list.append(
KAN([hidden_feat, hidden_feat, hidden_feat])
)
elif kan_layers == 1:
self.module_list.append(KAN([hidden_feat, hidden_feat]))
else:
raise ValueError("Invalid number of KAN layers")
# Last layer
if mp_layers > 1:
if kan_layers == 2:
self.module_list.append(KAN([hidden_feat, hidden_feat, out_feat]))
elif kan_layers == 1:
self.module_list.append(KAN([hidden_feat, out_feat]))
else:
raise ValueError("Invalid number of KAN layers")
def forward(self, x, adj):
if self.input_embed:
x = self.lin_in(x)
for kan in self.module_list:
x = kan(spmm(adj, x))
return x
class KANonly(torch.nn.Module):
def __init__(
self,
in_feat,
hidden_feat,
out_feat,
use_bias=False,
kan_layers=2,
input_embed=False,
):
super().__init__()
self.input_embed = input_embed
if self.input_embed:
self.lin_in = nn.Linear(in_feat, hidden_feat, bias=use_bias)
if kan_layers == 2:
self.kan = KAN([hidden_feat, hidden_feat, out_feat])
elif kan_layers == 1:
self.kan = KAN([hidden_feat, out_feat])
else:
if kan_layers == 2:
self.kan = KAN([in_feat, hidden_feat, out_feat])
elif kan_layers == 1:
self.kan = KAN([in_feat, out_feat])
def forward(self, x):
if self.input_embed:
x = self.lin_in(x)
x = self.kan(x)
return x