-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpoints.py
executable file
·330 lines (296 loc) · 10.2 KB
/
points.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#!/opt/local/bin/python
from math import atan2, ceil, cos, exp, log, pi, sin, sqrt
from random import gauss, seed, shuffle, uniform
import numpy as np
from matplotlib import cm, pyplot
from numba import njit
from numpy import array, dot, empty, linspace, mean, ndarray, ndindex, zeros
from numpy.linalg import norm
from scipy.optimize import minimize
from scipy.spatial import KDTree
from scipy.stats import multivariate_normal
from scipy.stats.qmc import PoissonDisk
from time import time
from psa_wrapper import psa_wrapper
from ccvt_wrapper import ccvt_wrapper
from dyadic_wrapper import dyadic_wrapper
from common import vec2, vec3, rand_vec2, V, Euler, RK4, L2_star_disc
from scnoise import scnoise, scnoise_grad, scnoise_curl
from sosnoise import sos_noise, sos_noise_grad
from perlinnoise import perlin_noise_grad
def Fourier_spectrum(P, sz=2048):
'''Create fourier transform of image generated from points'''
I = zeros((sz,sz))
for p in P:
i = max(0, min(sz-1, int(sz*p[0])))
j = max(0, min(sz-1, int(sz*p[1])))
I[i,j] = 1
ft = np.fft.fft2(I)
ft = np.fft.fftshift(ft)
ft_mag = np.clip(np.abs(ft)**2, 0.0, 5000)
return ft_mag
def psa_point_stats(P):
'''Use the PSA program to compute a range of statistics for a a point set. Specifically,
the function returns effective Nyquist, anisotropy, quality, and radial spectrum. '''
(effnyquist, oscillations, data_rp, data_ani, data_rdf) = psa_wrapper([P])
aniso = array(data_rp[1][1:])**2 @ array(data_ani[1][1:])
q = effnyquist/aniso
return effnyquist, aniso, q, data_rp
def show_Fourier_spectrum(P,ax):
'''Matplotlib display of Fourier spectrum.'''
ft_mag = Fourier_spectrum(P)
ax.imshow(ft_mag, cmap='gray')
ax.set_xlim(924, 1124)
ax.set_ylim(924, 1124)
def show_points(P,ax):
'''Matplotlib display of point cloud.'''
ax.set_aspect('equal')
ax.scatter(P[:,0], P[:,1], color='k', s=0.5)#, s=0.25, marker='.')
ax.set_xlim(0,1)
ax.set_ylim(0,1)
# Constants used for various visualization modes.
POINTS = 1
FOURIER = 2
STATS = 3
ALL = 4
def Poisson_disk_points(N=1000):
'''Compute the Poisson Disk Sampling for given number of points.'''
r = 0.8/(ceil(sqrt(N)))
eng = PoissonDisk(d=2,radius=r)
return eng.random(N)
def ccvt_points(N=1000):
'''Compute the Capacity Constrained Voronoi Tessellation for given number of points.'''
return ccvt_wrapper(N)
def regular_shuffle_2d(n=64,i0=0,j0=0):
'''Shuffles the points by random descent in an quadtree. This is not strictly needed
but provides a random ordering of the points completely independent of curl noise
jittering. Can be used for progressive generation.'''
if n==1:
return [ (i0,j0) ]
n2 = n//2
L_leaves = [regular_shuffle_2d(n2, i0+i*n2, j0+j*n2) for i,j in ndindex((2,2))]
L = []
order = [0, 1, 2, 3]
for k in range(len(L_leaves[0])):
shuffle(order)
L += [ L_leaves[o][k] for o in order ]
return L
def coherently_jittered_points(N=1000):
'''This function performs coherent jittering'''
P = []
Ny = int(ceil(sqrt(N)))
Nx = Ny
shiftx = [ uniform(0,1) for _ in range(Ny+4)]
shifty = [ uniform(0,1) for _ in range(Nx+4)]
for i,j in ndindex(Nx+4, Ny+4):
p = vec2(i-2+shiftx[j],j-2+shifty[i]) / Nx
if 0 < p[0] < 1 and 0 < p[1] < 1:
P.append(p)
return array(P)
def smoothly_jittered_points(N=1000):
'''This function jitters by smoothing jittered positions'''
P = []
delta_x = cos(pi/3)
delta_y = sin(pi/3)
Ny = int(ceil(sqrt(N/delta_y)))
Nx = int(Ny * delta_y)
indices = list(ndindex(Nx+4,Ny+4))
A = empty((Nx+4,Ny+4,2))
for _i,_j in indices:
i = _i - 2
j = _j - 2
alpha = uniform(0,2*pi)
p = (1.1/Nx)*uniform(0,1)*vec2(cos(alpha),sin(alpha))
A[i,j,:] = p
A_new = array(A)
for _i,_j in ndindex(Nx+2,Ny+2):
i = _i - 1
j = _j - 1
A_new[i,j] += A[i-1,j]+A[i+1,j]+A[i-1,j+1]+A[i+1,j+1]+A[i-1,j-1]+A[i+1,j-1]
A_new[i,j] /= 7
A = A_new
for _i,_j in indices:
i = _i - 2
j = _j - 2
p = vec2(i+(j%2)*delta_x,(j+0.5)*delta_y) / Nx
p += A[i,j]
if 0 < p[0] < 1 and 0 < p[1] < 1:
P.append(p)
return array(P)
def curl_noise_jittered_points_iterative(noise_grad=perlin_noise_grad, N=1000, triangular_grid=True, step_fun=RK4, dt=0.9, noise_scale=4, iter=1, offset=vec2(0,0), fraction=1):
'''This function actually performs curl noise jittering - iterative fashion'''
P = []
delta_x = cos(pi/3) if triangular_grid else 0
delta_y = sin(pi/3) if triangular_grid else 1
Ny = int(ceil(sqrt(N/delta_y)))
Nx = int(Ny * delta_y)
indices = regular_shuffle_2d(2**ceil(log(max(Nx,Ny))/log(2)))
jitter_dists = []
for _i,_j in indices[0:int(fraction*len(indices))]:
i = _i - 2
j = _j - 2
p = vec2(i+(j%2)*delta_x,(j+0.5)*delta_y) / Nx
p_old = p
for k in range(iter):
p = step_fun(p, dt/(Nx*2**k), Nx/noise_scale, offset=offset+vec2(k*31.42, k*53.3), noise_grad=noise_grad)
if 0 < p[0] < 1 and 0 < p[1] < 1:
P.append(p)
jitter_dists.append(norm(p-p_old))
return array(P), array(jitter_dists)*Nx
def curl_noise_jittered_points(noise_grad=perlin_noise_grad, N=1000, triangular_grid=True, step_fun=RK4, dt=0.9, noise_scale=4, offset=vec2(0,0), fraction=1):
'''This function actually performs curl noise jittering'''
P = []
delta_x = cos(pi/3) if triangular_grid else 0
delta_y = sin(pi/3) if triangular_grid else 1
Ny = int(ceil(sqrt(N/delta_y)))
Nx = int(Ny * delta_y)
indices = regular_shuffle_2d(2**ceil(log(max(Nx,Ny))/log(2)))
jitter_dists = []
for _i,_j in indices[0:int(fraction*len(indices))]:
i = _i - 2
j = _j - 2
p = vec2(i+(j%2)*delta_x,(j+0.5)*delta_y) / Nx
p_old = p
p = step_fun(p, dt/Nx, Nx/noise_scale, offset=offset, noise_grad=noise_grad)
if 0 < p[0] < 1 and 0 < p[1] < 1:
P.append(p)
jitter_dists.append(norm(p-p_old))
return array(P), array(jitter_dists)*Nx
def point_generation(ax, N=1000, triangular_grid=True, step_fun=RK4, dt=0.9, noise_scale=4, show=POINTS, iter=1):
''' Produce a point set using any of the available methods and show a figure.'''
str = ""
if iter>0:
if iter>1:
P,_ = curl_noise_jittered_points_iterative(N=N, triangular_grid=triangular_grid, step_fun=step_fun, dt=dt, noise_scale=noise_scale, iter=iter)
else:
P,_ = curl_noise_jittered_points(N=N, triangular_grid=triangular_grid, step_fun=step_fun, dt=dt, noise_scale=noise_scale)
str = f"CNJ s: {noise_scale:5.3f}, t: {dt:5.3f}"
if iter > 1:
str += f", #iter: {iter} "
elif iter==0:
P = Poisson_disk_points(N)
str = "PDS"
elif iter==-1:
P = coherently_jittered_points(N)
str = "Coherent Jittering"
elif iter==-2:
P = array(ccvt_points(N))
str = "CCVT"
elif iter==-3:
P = smoothly_jittered_points(N)
str = "Smoothed Jittering"
elif iter==-4:
P = array(dyadic_wrapper(10,sigma=0.5))
str = "Smoothed Jittering"
if show==FOURIER:
show_Fourier_spectrum(P, ax)
elif show==POINTS:
e,a,q,_ = psa_point_stats(P)
str += f", Q: {q:5.3}"
show_points(P,ax)
ax.set_title(str)
print(str)
return P
###### Visualization functions
def table2():
'''Produces the raw output for generating Table 2 in "Curl Noise Jittering"
by Bærentzen, Frisvad, and Martinez'''
N=1000
dt = 1.05862
s = 2.86207
dt_iter = 1.0
s_iter = 3.75
iterations=64
f = open("table2_data.txt", 'w')
def output(P, str, t):
e,a,q,_ = psa_point_stats(P)
l2sd = L2_star_disc(P)
f.write(str + f"| {e} & {a} & {q} & {l2sd} & {t}\n")
f.flush()
for i in range(100):
seed(i)
offs = vec2(uniform(0,10),uniform(0,10))
T = time()
P,_ = curl_noise_jittered_points(N=N, dt=dt, noise_scale=s, offset=offs)
str = f"CNJ s: {s:5.3f}, t: {dt:5.3f}"
output(P, str, time()-T)
T = time()
P,_ = curl_noise_jittered_points_iterative(N=N, dt=dt_iter, noise_scale=s_iter, iter=iterations, offset=offs)
str = f"CNJ s: {s_iter:5.3f}, t: {dt_iter:5.3f}, #iter: {iterations} "
output(P, str, time()-T)
T = time()
P = Poisson_disk_points(N)
str = "PDS"
output(P, str, time()-T)
T = time()
P = coherently_jittered_points(N)
str = "Coherent Jittering"
output(P, str, time()-T)
T = time()
P = array(ccvt_wrapper(N, random_seed=i))
str = "CCVT"
output(P, str, time()-T)
T = time()
P = smoothly_jittered_points(N)
str = "Smoothed Jittering"
output(P, str, time()-T)
T = time()
P = array(dyadic_wrapper(10,sigma=0.5))
str = "Blue Nets"
output(P, str, time()-T)
def figure4(N=1000):
'''Produces the PDF for Figure 4 in "Curl Noise Jittering"
by Bærentzen, Frisvad, and Martinez'''
dt = 1.05862
s = 2.86207
dt_iter = 1.0
s_iter = 3.75
iter=64
fig, axs = pyplot.subplots(3,7, tight_layout=True)
fig.set_size_inches(w=17.5,h=7.5)
fig.set_dpi(320)
for i,j in np.ndindex((3,7)):
axs[i,j].set_xticks([])
axs[i,j].set_yticks([])
for i in range(7):
axs[2,i].set_ylim((0,3))
point_generation(axs[0,0], N=N, show=POINTS, dt=dt, noise_scale=s)
point_generation(axs[0,1], N=N, show=POINTS, dt=dt_iter, iter=iter, noise_scale=s_iter)
point_generation(axs[0,2], N=N, iter=-1, show=POINTS)
point_generation(axs[0,3], N=N, iter=-3, show=POINTS)
point_generation(axs[0,4], N=N, iter=-4, show=POINTS)
point_generation(axs[0,5], N=N, iter=-2, show=POINTS)
point_generation(axs[0,6], N=N, iter=0, show=POINTS)
axs[0,0].set_title("CNJ")
axs[0,1].set_title("Iterative CNJ")
axs[0,2].set_title("Correlated Multi-Jittering")
axs[0,3].set_title("Smoothed Jittering")
axs[0,4].set_title("Blue Nets")
axs[0,5].set_title("CCVT")
axs[0,6].set_title("Poisson Disk Sampling")
P = point_generation(axs[1,0], N=N, dt=dt, noise_scale=s, show=FOURIER)
e,a,q,rp = psa_point_stats(P)
axs[2,0].plot(rp[0],rp[1])
P = point_generation(axs[1,1], N=N, dt=dt_iter, iter=iter, noise_scale=s_iter, show=FOURIER)
e,a,q,rp = psa_point_stats(P)
axs[2,1].plot(rp[0],rp[1])
P = point_generation(axs[1,2], N=N, iter=-1, show=FOURIER)
e,a,q,rp = psa_point_stats(P)
axs[2,2].plot(rp[0],rp[1])
P = point_generation(axs[1,3], N=N, iter=-3, show=FOURIER)
e,a,q,rp = psa_point_stats(P)
axs[2,3].plot(rp[0],rp[1])
P = point_generation(axs[1,4], N=N, iter=-4, show=FOURIER)
e,a,q,rp = psa_point_stats(P)
axs[2,4].plot(rp[0],rp[1])
P = point_generation(axs[1,5], N=N, iter=-2, show=FOURIER)
e,a,q,rp = psa_point_stats(P)
axs[2,5].plot(rp[0],rp[1])
P = point_generation(axs[1,6], N=N, iter=0, show=FOURIER)
e,a,q,rp = psa_point_stats(P)
axs[2,6].plot(rp[0],rp[1])
pyplot.savefig("figure_4.pdf")
if __name__ == "__main__":
##### Code for various experiments below. Uncomment as appropriate.
figure4(N=1000)
# table2()