-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaudio_panner.py
324 lines (276 loc) · 11.5 KB
/
audio_panner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
from scipy.io import loadmat
from scipy.spatial import Delaunay
from scipy.signal import butter, lfilter, convolve
import scipy.io.wavfile as wav
from pysndfx import AudioEffectsChain
from numba import jit
import numpy as np
import time
import ffmpeg
import os
import shutil
import warnings
warnings.filterwarnings("ignore")
start= time.time()
class HRTF(object):
def __init__(self):
self.hrir = {}
self.triangulation = {'points': [],
'triangles' : None}
def weight_calc(self,points):
tri = self.triangulation['triangles'].find_simplex(points)
X = self.triangulation['triangles'].transform[tri,:2]
Y = points - self.triangulation['triangles'].transform[tri,2]
b = np.einsum('ijk,ik->ij', X, Y)
return (np.c_[b,1-b.sum(axis=1)],
self.triangulation['triangles'].simplices[tri])
def load_subject(self,subject_file,hrir_len=200,azimuths=None,elevations=None):
x = loadmat(subject_file)
hrir_r = x['hrir_r']
hrir_l = x['hrir_l']
ir = {'L': {}, 'R': {}}
if azimuths is None:
azimuths = [-80, -65, -55, -45, -40, -35, -30, -25, -20,
-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 55, 65, 80]
if elevations is None:
elevations = [-45+5.625*x for x in range(50)]
points = []
for azi in [-90,90]:
ir['L'][azi] = {}
ir['R'][azi] = {}
if azi == -90:
for j,elv in enumerate(elevations):
if j == 0:
to_add_l = hrir_l[0,j]
to_add_r = hrir_r[0,j]
else:
to_add_l += hrir_l[0,j]
to_add_r += hrir_r[0,j]
avg_l = to_add_l/50
avg_r = to_add_r/50
all_elvs = [x for x in elevations]
all_elvs.extend([-90,270])
for elv in all_elvs:
ir['L'][azi][elv] = avg_l
ir['R'][azi][elv] = avg_r
points.append([azi,elv])
else:
for j,elv in enumerate(elevations):
if j == 0:
to_add_l = hrir_l[-1,j]
to_add_r = hrir_r[-1,j]
else:
to_add_l += hrir_l[-1,j]
to_add_r += hrir_r[-1,j]
avg_l = to_add_l/50
avg_r = to_add_r/50
for elv in all_elvs:
ir['L'][azi][elv] = avg_l
ir['R'][azi][elv] = avg_r
points.append([azi,elv])
for i,azi in enumerate(azimuths):
ir['L'][azi] = {}
ir['R'][azi] = {}
ir['L'][azi][-90] = calculate_weighted(hrir_l[i,0],-45.0,
hrir_l[i,-1],230.625)
ir['R'][azi][-90] = calculate_weighted(hrir_r[i,0],-45.0,
hrir_r[i,-1],230.625)
points.append([azi,-90])
for j,elv in enumerate(elevations):
ir['L'][azi][elv] = hrir_l[i,j]
ir['R'][azi][elv] = hrir_r[i,j]
points.append([azi,elv])
ir['L'][azi][270] = ir['L'][azi][-90]
ir['R'][azi][270] = ir['R'][azi][-90]
points.append([azi,270])
self.hrir = ir
self.triangulation['triangles'] = Delaunay(np.array(points))
self.triangulation['points'] = points
def check_file_type(audio_file):
_, ext = os.path.splitext(audio_file)
return ext
def other_to_wav(audio_file):
base = os.path.basename(audio_file)
filename , _ = os.path.splitext(base)
if os.path.exists(filename + '.wav'):
return filename
(
ffmpeg
.input(audio_file)
.output(filename + '.wav')
.run()
)
return filename
def calculate_weighted(vect1,point1,vect2,point2):
total = abs(-90 - point1) + abs(270 - point2)
weight1 = abs(-90 - point1)/total
weight2 = abs(270 - point2)/total
vect1 *= weight1
vect2 *= weight2
return vect1+vect2
def interpolater(angles,hrtf):
weights,indices = hrtf.weight_calc(angles)
points = []
for triangle in indices:
triangle_points = []
for index in triangle:
triangle_points.append(hrtf.triangulation['points'][index])
points.append(triangle_points)
right = hrtf.hrir['R']
left = hrtf.hrir['L']
interp_R = []
interp_L = []
@jit
def interpolate_loop(right,left,weights,points,interp_R,interp_L):
for i in range(weights.shape[0]):
interp_R.append(weights[i][0]*right[points[i][0][0]][points[i][0][1]]+
weights[i][1]*right[points[i][1][0]][points[i][1][1]]+
weights[i][2]*right[points[i][2][0]][points[i][2][1]])
interp_L.append(weights[i][0]*left[points[i][0][0]][points[i][0][1]]+
weights[i][1]*left[points[i][1][0]][points[i][1][1]]+
weights[i][2]*left[points[i][2][0]][points[i][2][1]])
interpolate_loop(right,left,weights,points,interp_R,interp_L)
return (interp_R,interp_L)
def to_mono(audio):
audio = audio.astype(np.float32)
one_channel = audio.sum(axis=1)/4
return one_channel.astype(np.int16)
def butter_pass(cutoff,sr,filt_type,order=5):
nyq = 0.5*sr
cutoff = cutoff / nyq
b, a = butter(order,cutoff, btype=filt_type, analog=False)
return b,a
def butter_lowpass_filter(data,lowcutoff,sr,order=5):
b,a = butter_pass(lowcutoff,sr,'low',order=order)
y = lfilter(b,a,data)
return y
def butter_highpass_filter(data,highcutoff,sr,order=5):
b,a = butter_pass(highcutoff,sr,'high',order)
y = lfilter(b,a,data)
return y
def add_reverb(in_file,out_file,room_scale=50):
shutil.move(in_file,'in.wav')
fx = (AudioEffectsChain().reverb(room_scale=room_scale))
fx('in.wav','out.wav')
shutil.move('out.wav',out_file)
shutil.move('in.wav',in_file)
def crossfade_tails(left,right,tailed_left,tailed_right,filter_len):
final_left = []
final_right = []
t = np.linspace(0,np.pi/2,filter_len)
fade_out = np.cos(t)**2
fade_in = np.sin(t)**2
for i, left_block in enumerate(left):
if i == 0:
final_left.extend(left_block)
final_right.extend(right[i])
else:
if len(left_block) < filter_len:
t = np.linspace(0,np.pi/2,len(left_block))
filter_len = len(left_block)
fade_out = np.cos(t)**2
fade_in = np.sin(t)**2
faded_left = tailed_left[i-1][-filter_len:]*fade_out + left_block[:filter_len]*fade_in
faded_right = tailed_right[i-1][-filter_len:]*fade_out + right[i][:filter_len]*fade_in
left_block[:filter_len] = faded_left
right[i][:filter_len] = faded_right
final_left.extend(left_block)
final_right.extend(right[i])
return final_left, final_right
def multiple_convolve(mono,hrir_l,hrir_r,audio_rate,circle_period,
crossfade_ms=25,low_freq = 50, high_freq = None):
crossfade_amount = int(audio_rate*crossfade_ms/1000.)
left_channel = []
right_channel = []
tailed_left = []
tailed_right = []
total_angles = len(hrir_l)
i = 0
pos = 0
angle_time = int(circle_period/total_angles*audio_rate)
total_samples = len(mono)
left = butter_highpass_filter(mono,low_freq,audio_rate)
right = butter_highpass_filter(mono,low_freq,audio_rate)
save = butter_lowpass_filter(mono,low_freq,audio_rate)
while pos < total_samples:
end = pos + angle_time+199
left_channel.append(convolve(left[pos:end],hrir_l[i],'valid'))
right_channel.append(convolve(right[pos:end],hrir_r[i],'valid'))
tailed_left.append(convolve(left[pos:end+crossfade_amount],
hrir_l[i],'valid'))
tailed_right.append(convolve(right[pos:end+crossfade_amount],
hrir_r[i],'valid'))
pos += angle_time
i += 1
i %= total_angles
left_channel,right_channel = crossfade_tails(left_channel,
right_channel,tailed_left,
tailed_right,crossfade_amount)
left_channel = np.array(left_channel)
right_channel = np.array(right_channel)
left_channel += save[:-199]
right_channel += save[:-199]
return np.column_stack((left_channel,right_channel))
def test_subject(subject_number):
if subject_number < 10:
subject_number = '00' + str(subject_number)
elif subject_number < 100:
subject_number = '0' + str(subject_number)
else:
subject_number = str(subject_number)
subject = 'subject_' + subject_number
return os.path.join('CIPIC_hrtf_database', 'standard_hrir_database',
subject,'hrir_final.mat')
def panner(audio_file,new_file_name,audio_dir='',sweep_time=15,sweep_frequency=0.1,
crossfade_ms=25,room_scale=85,subject=65,max_angle=90, low_freq=75,
high_freq = None):
if os.path.exists(os.path.join(audio_dir,'8D',new_file_name + '.wav')):
return
if os.path.exists('in.wav'):
os.remove('in.wav')
if os.path.exists('out.wav'):
os.remove('in.wav')
test = test_subject(subject)
x = loadmat(test)
hrir_r = x['hrir_r']
hrir_l = x['hrir_l']
hrtf = HRTF()
hrtf.load_subject(test)
number_per_side = int(sweep_time/(2*sweep_frequency))
if sweep_time/(number_per_side*2) < crossfade_ms/1000.:
print ('too fast to crossfade!!!!')
ext = check_file_type(audio_file)
cvt = False
if ext != '.wav':
print ('...Converting Audio')
fn = other_to_wav(audio_file)
audio_file = fn + '.wav'
cvt = True
audio_rate,test_audio = wav.read(audio_file)
mono = to_mono(test_audio)
circular = np.linspace(-max_angle,max_angle,number_per_side)
angles = [[az,0] for az in circular]
circle_reverse = np.linspace(max_angle,-max_angle,number_per_side)
angles.extend([[az,180] for az in circle_reverse])
hrir_l, hrir_r =interpolater(angles,hrtf)
print ('...Convolving Audio')
try:
new_audio = multiple_convolve(mono,hrir_l,hrir_r,audio_rate,sweep_time,
crossfade_ms,low_freq)
except:
if cvt:
os.remove(audio_file)
print ('Bad Convolve')
return
largest_value = np.max(new_audio)
if largest_value >= 32767:
new_audio *= 32766/largest_value
wav.write('temp.wav',audio_rate,new_audio.astype(np.int16))
print ('...Adding Reverb')
add_reverb('temp.wav',os.path.join(audio_dir,'8D',new_file_name + '.wav'),room_scale)
os.remove('temp.wav')
if cvt:
os.remove(audio_file)
#panner("test.mp3", 'slower','', sweep_time = 15, sweep_frequency = .1,
# crossfade_ms = 25, room_scale = 85, low_freq = 75,subject=163)
#print (time.time() - start)