-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththerm_ising.py
261 lines (210 loc) · 7.66 KB
/
therm_ising.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from tqdm import tqdm
import os
SAVE_FOLDER = lambda L, lattice, Sz_vals: f"results/MCE_L{L}_{lattice}_npos{Sz_vals}/"
SAVE_FOLDER_FIGS = lambda L, lattice, Sz_vals: f"figures/MCE_L{L}_{lattice}_npos{Sz_vals}/"
SAVE_EXT_FIGS = ".pdf"
SAVE_EXT = ".dat"
NN_list = {"SS": 4, "SC": 6, "HCP": 12, "Hex": 8, "FCC": 12, "BCC": 8}
N_list = {"SS": lambda L: L**2, "SC": lambda L: L**3, "HCP": lambda L: 4*L**3, "Hex": lambda L: L**3, "FCC": lambda L: 4*L**3, "BCC": lambda L: 2*L**3}
# System information
L = 8
lattice = "SC"
Sz_vals = 2
N = N_list[lattice](L)
NN = NN_list[lattice]
S = (Sz_vals - 1.0) / 2.0
J = 1.0
H_plot = [0.01, 0.02, 0.03, 0.04, 0.05, 0.1]
T_max = 25.0
T_vals = 200
H_max = 0.1
H_vals = 21
# Temperature, field, volume and J
T = np.arange(T_max / T_vals, T_max + T_max / T_vals, T_max / T_vals)
H = np.arange(0.0, H_max + H_max / (H_vals - 1), H_max / (H_vals - 1))
print("Computing thermodynamic variables for: ")
print(f" L: {L} | lattice: {lattice} | N: {N} | S: {S} | J: {J}")
print(f" Ti: {T[0]} | Tf: {T[-1]} | nT: {len(T)}")
print(f" Hi: {H[0]} | Hf: {H[-1]} | nH: {len(H)}")
# Energy and magnetization values and JDOS
max_E = 4.0 * S**2 * NN * N / 2.0
dE = 4
max_M = 2 * S * N
dM = 2
E_sys = np.arange(- max_E, max_E + dE, dE)
M_sys = np.arange(- max_M, max_M + dM, dM)
M_vals = len(M_sys)
E_vals = len(E_sys)
JDOS_filename = "JDOS/JDOS_L" + str(L) + "_" + lattice + "_npos" + str(Sz_vals) + ".dat"
print(f"Reading JDOS from file: {JDOS_filename}")
g = np.loadtxt(JDOS_filename)
if g[0, -1] == 0:
g[:, (M_vals//2)+1:] = g[:, (M_vals//2)-1::-1]
print("JDOS read")
# Partition function
ln_ZM = np.zeros((H_vals, T_vals, M_vals))
print("Checking if ln_Z is already computed")
if os.path.isdir(SAVE_FOLDER(L, lattice, Sz_vals)):
for q, m in enumerate(M_sys):
ln_ZM[:, :, q] = np.loadtxt(SAVE_FOLDER(L, lattice, Sz_vals) + f"lnZ_q{q}" + SAVE_EXT)
print("File found.")
else:
print(f"File not found. Iterations for Z: {H_vals * M_vals * T_vals}")
for q, m in enumerate(tqdm(M_sys)):
hits = np.where(g[:, q] != 0.0)[0]
energy = J * E_sys
for j, h in enumerate(H):
for i, t in enumerate(T):
cte = np.log(g[hits[0], q]) - (energy[hits[0]] - h * m) / t
ln_ZM[j, i, q] += cte
ln_ZM[j, i, q] += np.log(1 + np.sum(np.exp(np.log(g[hits[1:], q]) - ((energy[hits[1:]] - h * m) / t) - cte)))
print("Computed partition function")
# Minimization of G
G_tmp = np.zeros((H_vals, T_vals, M_vals))
G = np.zeros((H_vals, T_vals))
M = np.zeros((H_vals, T_vals))
for j, h in enumerate(H):
for q, m in enumerate(M_sys):
G_tmp[j, :, q] = - T * ln_ZM[j, :, q]
G[j, :] = np.min(G_tmp[j, :, :], axis=1)
M[j, :] = np.abs(M_sys[np.argmin(G_tmp[j, :, :], axis=1)])
G /= N
M /= N
S = - np.gradient(G, T, axis=1)
C = T * np.gradient(S, T, axis=1)
X = np.gradient(M, H, axis=0)
U = np.zeros((H_vals, T_vals))
for j, h in enumerate(H):
U[j, :] = G[j, :] + T * S[j, :]
print("Computed minimization of G and variables")
# MCE calculations
dSM = np.zeros((H_vals, T_vals))
# dT = np.zeros((H_vals, T_vals))
dM_dT_H = np.gradient(M, T, axis=1)
for i, t in enumerate(T):
for j, h in enumerate(H):
dSM[j, i] = np.trapz(dM_dT_H[:j+1, i], H[:j+1])
# dT[j, i] = t * (np.exp(-np.trapz(np.interp(H_new, H[:j+1], dM_dT_H[:j+1, i] / C[:j+1, i]), H_new)) - 1)
print("MCE calculations done")
# Find Tc for H = 0
T_interp = np.linspace(T[0], T[-1], int(1e7))
grad = - np.gradient(np.interp(T_interp, T, M[0, :]), T_interp)
Tc = T_interp[np.where(np.max(grad) == grad)[0][0]]
print(f"Tc = {Tc}")
print("Tc calculations done")
# Saving results
if not os.path.isdir(SAVE_FOLDER(L, lattice, Sz_vals)):
if not os.path.isdir("results/"):
os.mkdir("results/")
print(f"Saving Z on {SAVE_FOLDER(L, lattice, Sz_vals)}lnZ{SAVE_EXT}")
os.mkdir(SAVE_FOLDER(L, lattice, Sz_vals))
for q, m in enumerate(M_sys):
np.savetxt(SAVE_FOLDER(L, lattice, Sz_vals) + f"lnZ_q{q}" + SAVE_EXT, ln_ZM[:, :, q])
# Save dSM for T and H for later plotting
file_name = f"results/dSM_MCE_L{L}_{lattice}_npos{Sz_vals}.dat"
with open(file_name, "w") as file:
for i, t in enumerate(T):
file.write(f"{dSM[-1, i]} {t}\n")
# Global plotting options
plt.style.use('seaborn')
matplotlib.rcParams['mathtext.fontset'] = 'stix'
matplotlib.rcParams['lines.marker'] = '.'
matplotlib.rcParams['lines.linestyle'] = '-'
matplotlib.rcParams['lines.linewidth'] = '1'
matplotlib.rcParams['lines.markersize'] = '7.5'
matplotlib.rcParams['savefig.bbox'] = 'tight'
matplotlib.rcParams['figure.subplot.left'] = '0.1'
matplotlib.rcParams['figure.subplot.bottom'] = '0.1'
matplotlib.rcParams['figure.subplot.right'] = '0.97'
matplotlib.rcParams['figure.subplot.top'] = '0.97'
matplotlib.rcParams['figure.subplot.wspace'] = '0.2'
matplotlib.rcParams['figure.subplot.hspace'] = '0.2'
matplotlib.rcParams['figure.figsize'] = (12, 4)
if not os.path.isdir(SAVE_FOLDER_FIGS(L, lattice, Sz_vals)):
if not os.path.isdir("figures/"):
os.mkdir("figures/")
os.mkdir(SAVE_FOLDER_FIGS(L, lattice, Sz_vals))
max_T_idx = T_vals - 1
if Sz_vals == 2:
max_T_idx = 2 * T_vals // 5
# Plots
plt.subplots(1, 3)
plt.figure(1)
plt.subplot(1, 3, 1)
skip = 1
colors = plt.cm.viridis(np.linspace(0, 0.9, max_T_idx + 1))
for i, t in enumerate(T[:max_T_idx + 1]):
if i % skip == 0:
plt.plot(H, M[:, i], color=colors[i // skip])
plt.plot(H, M[:, 0], color=colors[0], label=f"T = {T[0]}")
plt.plot(H, M[:, max_T_idx], color=colors[-1], label=f"T = {T[max_T_idx]}")
plt.xlabel(r"$H$")
plt.ylabel(r"$M$")
# plt.legend()
plt.subplot(1, 3, 2)
colors = plt.cm.viridis(np.linspace(0, 0.9, len(H_plot) + 1))
i = 0
for j, h in enumerate(H):
if h not in H_plot and h != 0.0:
continue
plt.plot(T[:max_T_idx + 1], M[j, :max_T_idx + 1], color=colors[i], label=f"H = {h}")
i += 1
plt.xlabel(r"$T$")
plt.ylabel(r"$M$")
plt.legend()
plt.subplot(1, 3, 3)
colors = plt.cm.viridis(np.linspace(0, 0.9, len(H_plot)))
i = 0
for j, h in enumerate(H):
if h not in H_plot:
continue
plt.plot(T[:max_T_idx + 1], -dSM[j, :max_T_idx + 1], color=colors[i], label=f"H: {H[0]} to {h}")
i += 1
plt.xlabel(r"$T$")
plt.ylabel(r"$-\Delta S_M$")
plt.legend()
plt.savefig(SAVE_FOLDER_FIGS(L, lattice, Sz_vals) + f"MCE_magnetization" + SAVE_EXT_FIGS)
plt.subplots(2, 3, sharex="all")
plt.figure(2)
plt.subplot(2, 3, 1)
colors = plt.cm.viridis(np.linspace(0, 1, H_vals))
for j, h in enumerate(H):
plt.plot(T, M[j, :], color=colors[j], label=h)
plt.xlabel(r"$T$")
plt.ylabel(r"$M$")
plt.subplot(2, 3, 3)
colors = plt.cm.viridis(np.linspace(0, 1, H_vals))
for j, h in enumerate(H):
plt.plot(T, S[j, :], color=colors[j], label=h)
plt.xlabel(r"$T$")
plt.ylabel(r"$S$")
plt.subplot(2, 3, 2)
colors = plt.cm.viridis(np.linspace(0, 1, H_vals))
for j, h in enumerate(H):
plt.plot(T, U[j, :], color=colors[j], label=h)
plt.xlabel(r"$T$")
plt.ylabel(r"$U$")
plt.subplot(2, 3, 6)
colors = plt.cm.viridis(np.linspace(0, 1, H_vals))
for j, h in enumerate(H):
plt.plot(T, C[j, :], color=colors[j], label=h)
plt.xlabel(r"$T$")
plt.ylabel(r"$C$")
plt.subplot(2, 3, 4)
colors = plt.cm.viridis(np.linspace(0, 1, H_vals))
for j, h in enumerate(H):
plt.plot(T, X[j, :], color=colors[j], label=h)
plt.xlabel(r"$T$")
plt.ylabel(r"$\chi$")
plt.subplot(2, 3, 5)
colors = plt.cm.viridis(np.linspace(0, 1, H_vals))
for j, h in enumerate(H):
plt.plot(T, G[j, :], color=colors[j], label=h)
plt.xlabel(r"$T$")
plt.ylabel(r"$G$")
plt.savefig(SAVE_FOLDER_FIGS(L, lattice, Sz_vals) + f"TD" + SAVE_EXT_FIGS)
print(f"Figures saved on {SAVE_FOLDER_FIGS(L, lattice, Sz_vals)}")
plt.show()