-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDifferentiator.py
648 lines (498 loc) · 17.4 KB
/
Differentiator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
# Copyright Joan Montas
# All rights reserved.
# License under GNU General Public License v3.0
from abc import ABC, abstractmethod, ABCMeta
variableConstant = "x"
class MetaAst(ABCMeta):
def __new__(cls, name, bases, attrs):
# Check for the required attribute
if "nodeType" not in attrs:
raise TypeError("Concrete classes must define a 'nodeType'.")
# Proceed with class creation
return super().__new__(cls, name, bases, attrs)
class Ast(metaclass=MetaAst):
nodeType = "AbstractNode"
@abstractmethod
def __str__(self):
pass
@abstractmethod
def __type__(self):
pass
class expressionAST(Ast):
nodeType = "expression"
def __init__(self, val0):
if not isinstance(val0, Ast):
raise TypeError("Error: expressionAst expects an Ast as argument")
self.value0 = val0
self.value1 = None
def __str__(self):
return str(self.value0)
def __type__(self):
return self.nodeType
def _diff(self):
return self.value0._diff()
class numberAST(Ast):
nodeType = "number"
def __init__(self, val0):
if not isinstance(val0, int) and not isinstance(val0, float):
raise TypeError("Error: numberAst expects an int as argumnt")
self.value0 = val0
self.value1 = None
def __str__(self):
return str(self.value0)
def __type__(self):
return self.nodeType
def _diff(self):
return numberAST(0)
class sinAST(Ast):
nodeType = "sin"
def __init__(self, val0):
self.value0 = val0
self.value1 = None
def __str__(self):
return f"sin({self.value0.__str__()})"
def __type__(self):
return self.nodeType
def _diff(self):
if self.value0.__type__() == "variable":
return cosAST(self.value0)
elif self.value0.__type__() == "number":
return self
else:
return _chainRule(self)
class cosAST(Ast):
nodeType = "cos"
def __init__(self, val0):
self.value0 = val0
self.value1 = None
def __str__(self):
return f"cos({self.value0.__str__()})"
def __type__(self):
return self.nodeType
def _diff(self):
if self.value0.__type__() == "variable":
return negativeAST(sinAST(self.value0))
elif self.value0.__type__() == "number":
return self
else:
return _chainRule(self)
class tanAST(Ast):
nodeType = "tan"
def __init__(self, val0):
self.value0 = val0
self.value1 = None
def __str__(self):
return f"tan({self.value0.__str__()})"
def __type__(self):
return self.nodeType
def _diff(self):
if self.value0.__type__() == "variable":
return sec2AST(self.value0)
elif self.value0.__type__() == "number":
return self
else:
return _chainRule(self)
class sec2AST(Ast):
# TODO(Joan) There is nothing special with sec2... simply apply power to better generalize - Joan
nodeType = "sec2"
def __init__(self, val0):
self.value0 = val0
self.value1 = None
def __str__(self):
return f"sec2({self.value0.__str__()})"
def __type__(self):
return self.nodeType
def _diff(self):
if self.value0.__type__() == "variable":
return multAST(
numberAST(2), multAST(sec2AST(self.value0), tanAST(self.value0))
)
elif self.value0.__type__() == "number":
return self
else:
return _chainRule(self)
class secAST(Ast):
nodeType = "sec"
def __init__(self, val0):
self.value0 = val0
self.value1 = None
def __str__(self):
return f"sec({self.value0.__str__()})"
def __type__(self):
return self.nodeType
def _diff(self):
if self.value0.__type__() == "variable":
return multAST(secAST(self.value0), tanAST(self.value0))
elif self.value0.__type__() == "number":
return self
else:
return _chainRule(self)
class cscAST(Ast):
nodeType = "csc"
def __init__(self, val0):
self.value0 = val0
self.value1 = None
def __str__(self):
return f"csc({self.value0.__str__()})"
def __type__(self):
return self.nodeType
def _diff(self):
if self.value0.__type__() == "variable":
# return multAST(negativeAST(cscAST(self.value0)), cotAST(self.value0))
return negativeAST(multAST(cscAST(self.value0), cotAST(self.value0)))
elif self.value0.__type__() == "number":
return self
else:
return _chainRule(self)
class cotAST(Ast):
nodeType = "cot"
def __init__(self, val0):
self.value0 = val0
self.value1 = None
def __str__(self):
return f"cot({self.value0.__str__()})"
def __type__(self):
return self.nodeType
def _diff(self):
if self.value0.__type__() == "variable":
return negativeAST(csc2AST(self.value0))
elif self.value0.__type__() == "number":
return self
else:
return _chainRule(self)
class csc2AST(Ast):
# TODO(Joan) There is nothing special with csc2... simply apply power to better generalize - Joan
nodeType = "csc2"
def __init__(self, val0):
self.value0 = val0
self.value1 = None
def __str__(self):
return f"csc2({self.value0.__str__()})"
def __type__(self):
return self.nodeType
def _diff(self):
if self.value0.__type__() == "variable":
return negativeAST(
multAST(
numberAST(2), multAST(csc2AST(self.value0), cotAST(self.value0))
)
)
elif self.value0.__type__() == "number":
return self
else:
return _chainRule(self)
class arcsineAST(Ast):
nodeType = "arcsine"
def __init__(self, val0):
self.value0 = val0
self.value1 = None
def __str__(self):
return f"arcsine({self.value0.__str__()})"
def __type__(self):
return self.nodeType
def _diff(self):
if self.value0.__type__() == "variable":
return divAST(
numberAST(1),
powAST(
subAST(numberAST(1), powAST(self.value0, numberAST(2))),
numberAST(0.5),
),
)
elif self.value0.__type__() == "number":
return self
else:
return _chainRule(self)
class arccosineAST(Ast):
nodeType = "arccosine"
def __init__(self, val0):
self.value0 = val0
self.value1 = None
def __str__(self):
return f"arccosine({self.value0.__str__()})"
def __type__(self):
return self.nodeType
def _diff(self):
if self.value0.__type__() == "variable":
return negativeAST(
divAST(
numberAST(1),
powAST(
subAST(numberAST(1), powAST(self.value0, numberAST(2))),
numberAST(0.5),
),
)
)
elif self.value0.__type__() == "number":
return self
else:
return _chainRule(self)
class arctanAST(Ast):
nodeType = "arctan"
def __init__(self, val0):
self.value0 = val0
self.value1 = None
def __str__(self):
return f"arctan({self.value0.__str__()})"
def __type__(self):
return self.nodeType
def _diff(self):
if self.value0.__type__() == "variable":
return divAST(
numberAST(1), addAST(numberAST(1), powAST(self.value0, numberAST(2)))
)
elif self.value0.__type__() == "number":
return self
else:
return _chainRule(self)
class naturalLogAST(Ast):
nodeType = "ln"
def __init__(self, val0):
self.value0 = val0
self.value1 = None
def __str__(self):
return f"ln({self.value0.__str__()})"
def __type__(self):
return self.nodeType
def _diff(self):
# NOTE(Joan) x must be > 0 - Joan
if self.value0.__type__() == "variable":
return divAST(numberAST(1), self.value0)
elif self.value0.__type__() == "number":
return self
else:
return _chainRule(self)
class negativeAST(Ast):
nodeType = "negative"
def __init__(self, val0):
self.value0 = val0
self.value1 = None
def __str__(self):
return f"(-({self.value0.__str__()}))"
def __type__(self):
return self.nodeType
def _diff(self):
# if self.value0.__type__() == "variable":
# return negativeAST(self.value0._diff())
return self.value0._diff()
class variableAST(Ast):
nodeType = "variable"
def __init__(self, val0):
self.value0 = val0 # like x, y,...
self.value1 = None
def __str__(self):
return str(self.value0)
def __type__(self):
return self.nodeType
def _diff(self):
return numberAST(1)
class addAST(Ast):
nodeType = "add"
def __init__(self, val0, val1):
self.value0 = val0
self.value1 = val1
def __str__(self):
return f"(({self.value0.__str__()}) + ({self.value1.__str__()}))"
def __type__(self):
return self.nodeType
def _diff(self):
left = self.value0._diff()
right = self.value1._diff()
return addAST(left, right)
class subAST(Ast):
nodeType = "sub"
def __init__(self, val0, val1):
self.value0 = val0
self.value1 = val1
def __str__(self):
return f"(({self.value0.__str__()}) - ({self.value1.__str__()}))"
def __type__(self):
return self.nodeType
def _diff(self):
left = self.value0._diff()
right = self.value1._diff()
return subAST(left, right)
class multAST(Ast):
nodeType = "mult"
def __init__(self, val0, val1):
self.value0 = val0
self.value1 = val1
def __str__(self):
return f"(({self.value0.__str__()}) * ({self.value1.__str__()}))"
def __type__(self):
return self.nodeType
def _diff(self):
# NOTE(Joan) Could in theory check if being multiply by a non algebraic expression - Joan
# NOTE(Joan) This way can simply return multAst(non-alg, alg_prime) and vice versa - Joan
# NOTE(Joan) However, the property of d/dx(c) where c is a non-algebraic constant - Joan
# NOTE(Joan) Equals 0 and the multiplicative property of derivative will handle it - Joan
# NOTE(Joan) This is more verbose (in terms of differentiation) but just as correct - Joan
left = self.value0._diff()
right = self.value1._diff()
return addAST(multAST(left, self.value1), multAST(right, self.value0))
class divAST(Ast):
nodeType = "div"
def __init__(self, val0, val1):
self.value0 = val0
self.value1 = val1
def __str__(self):
return f"(({self.value0.__str__()}) / ({self.value1.__str__()}))"
def __type__(self):
return self.nodeType
def _diff(self):
left = self.value0._diff()
right = self.value1._diff()
return divAST(
subAST(multAST(left, self.value1), multAST(right, self.value0)),
powAST(self.value1, numberAST(2)),
)
class eulerAST(Ast):
nodeType = "euler"
def __init__(self):
self.value0 = None
self.value1 = None
def __str__(self):
return "e"
def __type__(self):
return self.nodeType
def _diff(self):
return numberAST(0)
class powAST(Ast):
nodeType = "pow"
def __init__(self, val0, val1):
self.value0 = val0
self.value1 = val1
def __str__(self):
return f"(({self.value0.__str__()}) ^({self.value1.__str__()}) )"
def __type__(self):
return self.nodeType
def _diff(self):
# NOTE(Joan) Power rule - Joan
if not isAlgebraic(self.value0):
if isinstance(self.value0, eulerAST):
if isinstance(self.value1, variableAST):
return self
return _chainRule(self) # account for e^alg
else:
if isAlgebraic(self.value1):
if isinstance(self.value1, variableAST):
return multAST(
powAST(self.value0, self.value1), naturalLogAST(self.value0)
)
return _chainRule(self) # account for non-alg ^ alg
return self # account for non-alg ^ non-alg
else:
if isAlgebraic(self.value1):
fPrime = self.value0._diff()
gPrime = self.value1._diff()
return multAST(
powAST(self.value0, self.value1),
addAST(
divAST(multAST(self.value1, fPrime), self.value0),
multAST(naturalLogAST(self.value0), gPrime),
),
) # alg ^alg
else:
if isinstance(self.value0, variableAST):
return multAST(
self.value1,
powAST(self.value0, subAST(self.value1, numberAST(1))),
)
return _chainRule(self) # alg ^ non-alg
raise NotImplementedError("Error: powAST condition not accounted for")
# NOTE (Joan) Could simply implement this function inside the class - Joan
# NOTE (Joan) Or simply abstract functions with single variable and double variable and group them - Joan
def _chainRule(f):
g = f.value0
gPrime = g._diff()
if isinstance(f, powAST):
# TODO(Joan) account for all power condition - Joan
if not isAlgebraic(f.value0):
if isinstance(f.value0, eulerAST):
# account for e^alg
g = f.value1
gPrime = g._diff()
fPrime = powAST(eulerAST(), variableAST(variableConstant))._diff()
fPrime.value1 = g
return multAST(fPrime, gPrime)
else:
if isAlgebraic(f.value1):
# account for non-alg ^ alg
g = f.value1
gPrime = g._diff()
fPrime = powAST(f.value0, variableAST(variableConstant))._diff()
fPrime.value0.value1 = g
return multAST(fPrime, gPrime)
else:
# NOTE(Joan )alg ^ alg should never be reached. Logarithmic Differetiation is accounted at powAst._diff() - Joan
if not isAlgebraic(f.value1):
fPrime = powAST(variableAST(variableConstant), f.value1)._diff()
fPrime.value1.value0 = g
return multAST(fPrime, gPrime) # alg ^ non-alg
if isinstance(f, sinAST):
fPrime = sinAST(variableAST(variableConstant))._diff()
fPrime.value0 = g
return multAST(fPrime, gPrime)
elif isinstance(f, cosAST):
fPrime = cosAST(variableAST(variableConstant))._diff()
fPrime.value0 = g
return multAST(fPrime, gPrime)
elif isinstance(f, tanAST):
fPrime = tanAST(variableAST(variableConstant))._diff()
fPrime.value0 = g
return multAST(fPrime, gPrime)
elif isinstance(f, sec2AST):
fPrime = sec2AST(variableAST(variableConstant))._diff()
fPrime.value1.value1.value0 = g
fPrime.value1.value0.value0 = g
return multAST(fPrime, gPrime)
elif isinstance(f, secAST):
fPrime = secAST(variableAST(variableConstant))._diff()
fPrime.value1.value0 = g
fPrime.value0.value0 = g
return multAST(fPrime, gPrime)
elif isinstance(f, cscAST):
fPrime = cscAST(variableAST(variableConstant))._diff()
fPrime.value0.value0.value0 = g
fPrime.value1.value0 = g
return multAST(fPrime, gPrime)
elif isinstance(f, cotAST):
fPrime = cotAST(variableAST(variableConstant))._diff()
print(fPrime)
fPrime.value0.value0 = g
return multAST(fPrime, gPrime)
elif isinstance(f, csc2AST):
fPrime = csc2AST(variableAST(variableConstant))._diff()
fPrime.value1.value0.value0 = g
fPrime.value1.value1.value0 = g
return multAST(fPrime, gPrime)
elif isinstance(f, arcsineAST):
fPrime = arcsineAST(variableAST(variableConstant))._diff()
fPrime.value1.value0.value1.value0 = g
return multAST(fPrime, gPrime)
elif isinstance(f, arccosineAST):
fPrime = arccosineAST(variableAST(variableConstant))._diff()
fPrime.value0.value1.value0.value1.value0 = g
return multAST(fPrime, gPrime)
elif isinstance(f, arctanAST):
fPrime = arctanAST(variableAST(variableConstant))._diff()
fPrime.value1.value1.value0 = g
return multAST(fPrime, gPrime)
elif isinstance(f, naturalLogAST):
fPrime = naturalLogAST(variableAST(variableConstant))._diff()
fPrime.value1 = g
return multAST(fPrime, gPrime)
else:
raise NotImplementedError(
"Error: _chain rule is unable to acess this type's function g"
)
def isAlgebraic(n):
if not (isinstance(n, Ast)):
return False
if isinstance(n, variableAST):
return True
if isAlgebraic(n.value0):
return True
if isAlgebraic(n.value1):
return True
return False