-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathp4zprod.F90
590 lines (538 loc) · 28.8 KB
/
p4zprod.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
MODULE p4zprod !!======================================================================
!! *** MODULE p4zprod ***
!! TOP : Growth Rate of the two phytoplanktons groups
!!======================================================================
!! History : 1.0 ! 2004 (O. Aumont) Original code
!! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90
!! 3.4 ! 2011-05 (O. Aumont, C. Ethe) New parameterization of light limitation
!!----------------------------------------------------------------------
#if defined key_pisces
!!----------------------------------------------------------------------
!! 'key_pisces' PISCES bio-model
!!----------------------------------------------------------------------
!! p4z_prod : Compute the growth Rate of the two phytoplanktons groups
!! p4z_prod_init : Initialization of the parameters for growth
!! p4z_prod_alloc : Allocate variables for growth
!!----------------------------------------------------------------------
USE oce_trc ! shared variables between ocean and passive tracers
USE trc ! passive tracers common variables
USE sms_pisces ! PISCES Source Minus Sink variables
USE p4zopt ! optical model
USE p4zlim ! Co-limitations of differents nutrients
USE prtctl_trc ! print control for debugging
USE iom ! I/O manager
IMPLICIT NONE
PRIVATE
PUBLIC p4z_prod ! called in p4zbio.F90
PUBLIC p4z_prod_init ! called in trcsms_pisces.F90
PUBLIC p4z_prod_alloc
!! * Shared module variables
LOGICAL , PUBLIC :: ln_newprod = .FALSE.
REAL(wp), PUBLIC :: pislope = 3.0_wp !:
REAL(wp), PUBLIC :: pislope2 = 3.0_wp !:
REAL(wp), PUBLIC :: excret = 10.e-5_wp !:
REAL(wp), PUBLIC :: excret2 = 0.05_wp !:
REAL(wp), PUBLIC :: bresp = 0.00333_wp !:
REAL(wp), PUBLIC :: chlcnm = 0.033_wp !:
REAL(wp), PUBLIC :: chlcdm = 0.05_wp !:
REAL(wp), PUBLIC :: chlcmin = 0.00333_wp !:
REAL(wp), PUBLIC :: fecnm = 10.E-6_wp !:
REAL(wp), PUBLIC :: fecdm = 15.E-6_wp !:
REAL(wp), PUBLIC :: grosip = 0.151_wp !:
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: prmax !: optimal production = f(temperature)
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: myvar !: optimal production = f(temperature)
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: quotan !: proxy of N quota in Nanophyto
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: quotad !: proxy of N quota in diatomee
REAL(wp) :: r1_rday !: 1 / rday
REAL(wp) :: texcret !: 1 - excret
REAL(wp) :: texcret2 !: 1 - excret2
REAL(wp) :: tpp !: Total primary production
!!* Substitution
# include "top_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/TOP 3.3 , NEMO Consortium (2010)
!! $Id: p4zprod.F90 3160 2011-11-20 14:27:18Z cetlod $
!! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE p4z_prod( kt , jnt )
!!---------------------------------------------------------------------
!! *** ROUTINE p4z_prod ***
!!
!! ** Purpose : Compute the phytoplankton production depending on
!! light, temperature and nutrient availability
!!
!! ** Method : - ???
!!---------------------------------------------------------------------
!
INTEGER, INTENT(in) :: kt, jnt
!
INTEGER :: ji, jj, jk
REAL(wp) :: zsilfac, zfact, znanotot, zdiattot, zconctemp, zconctemp2
REAL(wp) :: zratio, zmax, zsilim, ztn, zadap
REAL(wp) :: zlim, zsilfac2, zsiborn, zprod, zproreg, zproreg2
REAL(wp) :: zmxltst, zmxlday, zmaxday
REAL(wp) :: zpislopen , zpislope2n
REAL(wp) :: zrum, zcodel, zargu, zval
REAL(wp) :: zrfact2
CHARACTER (len=25) :: charout
REAL(wp), POINTER, DIMENSION(:,: ) :: zmixnano, zmixdiat, zstrn
REAL(wp), POINTER, DIMENSION(:,:,:) :: zpislopead, zpislopead2, zprdia, zprbio, zprdch, zprnch, zysopt
REAL(wp), POINTER, DIMENSION(:,:,:) :: zprorca, zprorcad, zprofed, zprofen, zprochln, zprochld, zpronew, zpronewd
REAL(wp), POINTER, DIMENSION(:,:,:) :: gmxlN, gmxlD, xlimLN, xlimLD
!!---------------------------------------------------------------------
!
IF( nn_timing == 1 ) CALL timing_start('p4z_prod')
!
! Allocate temporary workspace
CALL wrk_alloc( jpi, jpj, zmixnano, zmixdiat, zstrn )
CALL wrk_alloc( jpi, jpj, jpk, zpislopead, zpislopead2, zprdia, zprbio, zprdch, zprnch, zysopt, xlimLN, xlimLD )
CALL wrk_alloc( jpi, jpj, jpk, zprorca, zprorcad, zprofed, zprofen, zprochln, zprochld, zpronew, zpronewd, gmxlN, gmxlD )
!
zprorca (:,:,:) = 0._wp
zprorcad(:,:,:) = 0._wp
zprofed (:,:,:) = 0._wp
zprofen (:,:,:) = 0._wp
zprochln(:,:,:) = 0._wp
zprochld(:,:,:) = 0._wp
zpronew (:,:,:) = 0._wp
zpronewd(:,:,:) = 0._wp
zprdia (:,:,:) = 0._wp
zprbio (:,:,:) = 0._wp
zprdch (:,:,:) = 0._wp
zprnch (:,:,:) = 0._wp
zysopt (:,:,:) = 0._wp
!Joan
gmxlN (:,:,:) = 0._wp
gmxlD (:,:,:) = 0._wp
xlimLN (:,:,:) = 0._wp
xlimLD (:,:,:) = 0._wp
!end
! Computation of the optimal production
prmax(:,:,:) = 0.6_wp * r1_rday * tgfunc(:,:,:)
IF( lk_degrad ) prmax(:,:,:) = prmax(:,:,:) * facvol(:,:,:)
! compute the day length depending on latitude and the day
zrum = REAL( nday_year - 80, wp ) / REAL( nyear_len(1), wp )
zcodel = ASIN( SIN( zrum * rpi * 2._wp ) * SIN( rad * 23.5_wp ) )
! day length in hours
zstrn(:,:) = 0.
DO jj = 1, jpj
DO ji = 1, jpi
zargu = TAN( zcodel ) * TAN( gphit(ji,jj) * rad )
zargu = MAX( -1., MIN( 1., zargu ) )
zstrn(ji,jj) = MAX( 0.0, 24. - 2. * ACOS( zargu ) / rad / 15. )
END DO
END DO
IF( ln_newprod ) THEN
! Impact of the day duration on phytoplankton growth
DO jk = 1, jpkm1
DO jj = 1 ,jpj
DO ji = 1, jpi
IF( etot(ji,jj,jk) > 1.E-3 ) THEN
zval = MAX( 1., zstrn(ji,jj) )
zval = 1.5 * zval / ( 12. + zval )
zprbio(ji,jj,jk) = prmax(ji,jj,jk) * zval
zprdia(ji,jj,jk) = zprbio(ji,jj,jk)
!Joan
myvar(ji,jj,jk) = zprbio(ji,jj,jk)
!end
ENDIF
END DO
END DO
END DO
ENDIF
! Maximum light intensity
WHERE( zstrn(:,:) < 1.e0 ) zstrn(:,:) = 24.
zstrn(:,:) = 24. / zstrn(:,:)
IF( ln_newprod ) THEN
!CDIR NOVERRCHK
DO jk = 1, jpkm1
!CDIR NOVERRCHK
DO jj = 1, jpj
!CDIR NOVERRCHK
DO ji = 1, jpi
! Computation of the P-I slope for nanos and diatoms
IF( etot(ji,jj,jk) > 1.E-3 ) THEN
ztn = MAX( 0., tsn(ji,jj,jk,jp_tem) - 15. )
zadap = 0.5 * ztn / ( 2.+ ztn )
zconctemp = MAX( 0.e0 , trn(ji,jj,jk,jpdia) - 5e-7 )
zconctemp2 = trn(ji,jj,jk,jpdia) - zconctemp
znanotot = enano(ji,jj,jk) * zstrn(ji,jj)
zdiattot = ediat(ji,jj,jk) * zstrn(ji,jj)
zfact = EXP( -0.21 * znanotot )
zpislopead (ji,jj,jk) = pislope * ( 1.+ zadap * zfact ) &
& * trn(ji,jj,jk,jpnch) /( trn(ji,jj,jk,jpphy) * 12. + rtrn)
zpislopead2(ji,jj,jk) = (pislope * zconctemp2 + pislope2 * zconctemp) / ( trn(ji,jj,jk,jpdia) + rtrn ) &
& * trn(ji,jj,jk,jpdch) /( trn(ji,jj,jk,jpdia) * 12. + rtrn)
! Computation of production function for Carbon
! ---------------------------------------------
zpislopen = zpislopead (ji,jj,jk) / ( ( r1_rday + bresp * r1_rday ) * rday + rtrn)
zpislope2n = zpislopead2(ji,jj,jk) / ( ( r1_rday + bresp * r1_rday ) * rday + rtrn)
zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * ( 1.- EXP( -zpislopen * znanotot ) )
zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * ( 1.- EXP( -zpislope2n * zdiattot ) )
!Joan
xlimLN(ji,jj,jk) = 1.- EXP( -zpislopen * znanotot )
xlimLD(ji,jj,jk) = 1.- EXP( -zpislope2n * zdiattot )
!end
! Computation of production function for Chlorophyll
!--------------------------------------------------
zmaxday = 1._wp / ( prmax(ji,jj,jk) * rday + rtrn )
zprnch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislopead (ji,jj,jk) * zmaxday * znanotot ) )
zprdch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislopead2(ji,jj,jk) * zmaxday * zdiattot ) )
ENDIF
END DO
END DO
END DO
ELSE
!CDIR NOVERRCHK
DO jk = 1, jpkm1
!CDIR NOVERRCHK
DO jj = 1, jpj
!CDIR NOVERRCHK
DO ji = 1, jpi
! Computation of the P-I slope for nanos and diatoms
IF( etot(ji,jj,jk) > 1.E-3 ) THEN
ztn = MAX( 0., tsn(ji,jj,jk,jp_tem) - 15. )
zadap = ztn / ( 2.+ ztn )
zfact = EXP( -0.21 * enano(ji,jj,jk) )
zpislopead (ji,jj,jk) = pislope * ( 1.+ zadap * zfact )
zpislopead2(ji,jj,jk) = pislope2
zpislopen = zpislopead(ji,jj,jk) * trn(ji,jj,jk,jpnch) &
& / ( trn(ji,jj,jk,jpphy) * 12. + rtrn ) &
& / ( prmax(ji,jj,jk) * rday * xlimphy(ji,jj,jk) + rtrn )
zpislope2n = zpislopead2(ji,jj,jk) * trn(ji,jj,jk,jpdch) &
& / ( trn(ji,jj,jk,jpdia) * 12. + rtrn ) &
& / ( prmax(ji,jj,jk) * rday * xlimdia(ji,jj,jk) + rtrn )
! Computation of production function for Carbon
! ---------------------------------------------
zprbio(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) ) )
zprdia(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislope2n * ediat(ji,jj,jk) ) )
!Joan
myvar(ji,jj,jk) = prmax(ji,jj,jk)
xlimLN(ji,jj,jk) = 1.- EXP( -zpislopen * enano(ji,jj,jk) )
xlimLD(ji,jj,jk) = 1.- EXP( -zpislope2n * ediat(ji,jj,jk) )
!end
! Computation of production function for Chlorophyll
!--------------------------------------------------
zprnch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) * zstrn(ji,jj) ) )
zprdch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislope2n * ediat(ji,jj,jk) * zstrn(ji,jj) ) )
ENDIF
END DO
END DO
END DO
ENDIF
! Computation of a proxy of the N/C ratio
! ---------------------------------------
!CDIR NOVERRCHK
DO jk = 1, jpkm1
!CDIR NOVERRCHK
DO jj = 1, jpj
!CDIR NOVERRCHK
DO ji = 1, jpi
zval = ( xnanonh4(ji,jj,jk) + xnanono3(ji,jj,jk) ) * prmax(ji,jj,jk) / ( zprbio(ji,jj,jk) + rtrn )
quotan(ji,jj,jk) = MIN( 1., 0.5 + 0.5 * zval )
zval = ( xdiatnh4(ji,jj,jk) + xdiatno3(ji,jj,jk) ) * prmax(ji,jj,jk) / ( zprdia(ji,jj,jk) + rtrn )
quotad(ji,jj,jk) = MIN( 1., 0.5 + 0.5 * zval )
END DO
END DO
END DO
DO jk = 1, jpkm1
DO jj = 1, jpj
DO ji = 1, jpi
IF( etot(ji,jj,jk) > 1.E-3 ) THEN
! Si/C of diatoms
! ------------------------
! Si/C increases with iron stress and silicate availability
! Si/C is arbitrariliy increased for very high Si concentrations
! to mimic the very high ratios observed in the Southern Ocean (silpot2)
zlim = trn(ji,jj,jk,jpsil) / ( trn(ji,jj,jk,jpsil) + xksi1 )
zsilim = MIN( zprdia(ji,jj,jk) / ( prmax(ji,jj,jk) + rtrn ), xlimsi(ji,jj,jk) )
zsilfac = 4.4 * EXP( -4.23 * zsilim ) * MAX( 0.e0, MIN( 1., 2.2 * ( zlim - 0.5 ) ) ) + 1.e0
zsiborn = MAX( 0.e0, ( trn(ji,jj,jk,jpsil) - 15.e-6 ) )
zsilfac2 = 1.+ 2.* zsiborn / ( zsiborn + xksi2 )
zsilfac = MIN( 5.4, zsilfac * zsilfac2)
zysopt(ji,jj,jk) = grosip * zlim * zsilfac
ENDIF
END DO
END DO
END DO
! Computation of the limitation term due to a mixed layer deeper than the euphotic depth
DO jj = 1, jpj
DO ji = 1, jpi
zmxltst = MAX( 0.e0, hmld(ji,jj) - heup(ji,jj) )
zmxlday = zmxltst * zmxltst * r1_rday
zmixnano(ji,jj) = 1. - zmxlday / ( 3. + zmxlday )
zmixdiat(ji,jj) = 1. - zmxlday / ( 4. + zmxlday )
!Joan
!Levy et al.,1998 formulation for MLD>EUPH penalisation
! IF ( hmld(ji,jj) / heup(ji,jj) < 1.) THEN
! zmixnano(ji,jj) = 1.
! zmixdiat(ji,jj) = 1.
! ELSE IF (( hmld(ji,jj) / heup(ji,jj) >= 1 ) .AND. ( hmld(ji,jj) / heup(ji,jj) <= 2 )) THEN
! zmixnano(ji,jj) = -0.9 * (hmld(ji,jj) / heup(ji,jj) - 1.) + 1.
! zmixdiat(ji,jj) = -0.8 * (hmld(ji,jj) / heup(ji,jj) - 1.) + 1.
! ELSE
! zmixnano(ji,jj) = 0.1
! zmixdiat(ji,jj) = 0.2
! END IF
!Test without any penalisation
! zmixnano(ji,jj) = 0.1
! zmixdiat(ji,jj) = 0.1
END DO
END DO
!Al
IF( lk_iomput ) THEN
IF( jnt == nrdttrc ) THEN
CALL iom_put( "Irondep", ediat(:,:,1) * tmask(:,:,1) ) ! surface downward net flux of iron
CALL iom_put( "Nfix" , enano(:,:,1) * tmask(:,:,1) ) ! nitrogen fixation at surface
ENDIF
ENDIF
! Mixed-layer effect on production
DO jk = 1, jpkm1
DO jj = 1, jpj
DO ji = 1, jpi
IF( fsdepw(ji,jj,jk+1) <= hmld(ji,jj) ) THEN
!WRITE(*,*) hmld(ji,jj)
zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * zmixnano(ji,jj)
zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * zmixdiat(ji,jj)
!Joan
gmxlN(ji,jj,jk) = 1. - zmixnano(ji,jj)
gmxlD(ji,jj,jk) = 1. - zmixdiat(ji,jj)
!end
ENDIF
END DO
END DO
END DO
! Computation of the various production terms
!CDIR NOVERRCHK
DO jk = 1, jpkm1
!CDIR NOVERRCHK
DO jj = 1, jpj
!CDIR NOVERRCHK
DO ji = 1, jpi
IF( etot(ji,jj,jk) > 1.E-3 ) THEN
! production terms for nanophyto.
zprorca(ji,jj,jk) = zprbio(ji,jj,jk) * xlimphy(ji,jj,jk) * trn(ji,jj,jk,jpphy) * rfact2
zpronew(ji,jj,jk) = zprorca(ji,jj,jk) * xnanono3(ji,jj,jk) / ( xnanono3(ji,jj,jk) + xnanonh4(ji,jj,jk) + rtrn )
!
zratio = trn(ji,jj,jk,jpnfe) / ( trn(ji,jj,jk,jpphy) + rtrn )
zratio = zratio / fecnm
zmax = MAX( 0., ( 1. - zratio ) / ABS( 1.05 - zratio ) )
zprofen(ji,jj,jk) = fecnm * prmax(ji,jj,jk) &
& * ( 4. - 4.5 * xlimnfe(ji,jj,jk) / ( xlimnfe(ji,jj,jk) + 0.5 ) ) &
& * trn(ji,jj,jk,jpfer) / ( trn(ji,jj,jk,jpfer) + concnfe(ji,jj,jk) ) &
& * zmax * trn(ji,jj,jk,jpphy) * rfact2
! production terms for diatomees
zprorcad(ji,jj,jk) = zprdia(ji,jj,jk) * xlimdia(ji,jj,jk) * trn(ji,jj,jk,jpdia) * rfact2
zpronewd(ji,jj,jk) = zprorcad(ji,jj,jk) * xdiatno3(ji,jj,jk) / ( xdiatno3(ji,jj,jk) + xdiatnh4(ji,jj,jk) + rtrn )
!
zratio = trn(ji,jj,jk,jpdfe) / ( trn(ji,jj,jk,jpdia) + rtrn )
zratio = zratio / fecdm
zmax = MAX( 0., ( 1. - zratio ) / ABS( 1.05 - zratio ) )
zprofed(ji,jj,jk) = fecdm * prmax(ji,jj,jk) &
& * ( 4. - 4.5 * xlimdfe(ji,jj,jk) / ( xlimdfe(ji,jj,jk) + 0.5 ) ) &
& * trn(ji,jj,jk,jpfer) / ( trn(ji,jj,jk,jpfer) + concdfe(ji,jj,jk) ) &
& * zmax * trn(ji,jj,jk,jpdia) * rfact2
ENDIF
END DO
END DO
END DO
IF( ln_newprod ) THEN
!CDIR NOVERRCHK
DO jk = 1, jpkm1
!CDIR NOVERRCHK
DO jj = 1, jpj
!CDIR NOVERRCHK
DO ji = 1, jpi
IF( fsdepw(ji,jj,jk+1) <= hmld(ji,jj) ) THEN
zprnch(ji,jj,jk) = zprnch(ji,jj,jk) * zmixnano(ji,jj)
zprdch(ji,jj,jk) = zprdch(ji,jj,jk) * zmixdiat(ji,jj)
ENDIF
IF( etot(ji,jj,jk) > 1.E-3 ) THEN
! production terms for nanophyto. ( chlorophyll )
znanotot = enano(ji,jj,jk) * zstrn(ji,jj)
zprod = rday * zprorca(ji,jj,jk) * zprnch(ji,jj,jk) * xlimphy(ji,jj,jk)
zprochln(ji,jj,jk) = chlcmin * 12. * zprorca (ji,jj,jk)
zprochln(ji,jj,jk) = zprochln(ji,jj,jk) + (chlcnm-chlcmin) * 12. * zprod / ( zpislopead(ji,jj,jk) &
& * znanotot +rtrn)
! production terms for diatomees ( chlorophyll )
zdiattot = ediat(ji,jj,jk) * zstrn(ji,jj)
zprod = rday * zprorcad(ji,jj,jk) * zprdch(ji,jj,jk) * xlimdia(ji,jj,jk)
zprochld(ji,jj,jk) = chlcmin * 12. * zprorcad(ji,jj,jk)
zprochld(ji,jj,jk) = zprochld(ji,jj,jk) + (chlcdm-chlcmin) * 12. * zprod / ( zpislopead2(ji,jj,jk) &
& * zdiattot +rtrn)
ENDIF
END DO
END DO
END DO
ELSE
!CDIR NOVERRCHK
DO jk = 1, jpkm1
!CDIR NOVERRCHK
DO jj = 1, jpj
!CDIR NOVERRCHK
DO ji = 1, jpi
IF( etot(ji,jj,jk) > 1.E-3 ) THEN
! production terms for nanophyto. ( chlorophyll )
znanotot = enano(ji,jj,jk) * zstrn(ji,jj)
zprod = rday * zprorca(ji,jj,jk) * zprnch(ji,jj,jk) * trn(ji,jj,jk,jpphy) * xlimphy(ji,jj,jk)
zprochln(ji,jj,jk) = chlcnm * 144. * zprod / ( zpislopead(ji,jj,jk) * trn(ji,jj,jk,jpnch) * znanotot +rtrn)
! production terms for diatomees ( chlorophyll )
zdiattot = ediat(ji,jj,jk) * zstrn(ji,jj)
zprod = rday * zprorcad(ji,jj,jk) * zprdch(ji,jj,jk) * trn(ji,jj,jk,jpdia) * xlimdia(ji,jj,jk)
zprochld(ji,jj,jk) = chlcdm * 144. * zprod / ( zpislopead2(ji,jj,jk) * trn(ji,jj,jk,jpdch) * zdiattot +rtrn )
ENDIF
END DO
END DO
END DO
ENDIF
! Update the arrays TRA which contain the biological sources and sinks
DO jk = 1, jpkm1
DO jj = 1, jpj
DO ji =1 ,jpi
zproreg = zprorca(ji,jj,jk) - zpronew(ji,jj,jk)
zproreg2 = zprorcad(ji,jj,jk) - zpronewd(ji,jj,jk)
tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) - zprorca(ji,jj,jk) - zprorcad(ji,jj,jk)
tra(ji,jj,jk,jpno3) = tra(ji,jj,jk,jpno3) - zpronew(ji,jj,jk) - zpronewd(ji,jj,jk)
tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) - zproreg - zproreg2
tra(ji,jj,jk,jpphy) = tra(ji,jj,jk,jpphy) + zprorca(ji,jj,jk) * texcret
tra(ji,jj,jk,jpnch) = tra(ji,jj,jk,jpnch) + zprochln(ji,jj,jk) * texcret
tra(ji,jj,jk,jpnfe) = tra(ji,jj,jk,jpnfe) + zprofen(ji,jj,jk) * texcret
tra(ji,jj,jk,jpdia) = tra(ji,jj,jk,jpdia) + zprorcad(ji,jj,jk) * texcret2
tra(ji,jj,jk,jpdch) = tra(ji,jj,jk,jpdch) + zprochld(ji,jj,jk) * texcret2
tra(ji,jj,jk,jpdfe) = tra(ji,jj,jk,jpdfe) + zprofed(ji,jj,jk) * texcret2
tra(ji,jj,jk,jpbsi) = tra(ji,jj,jk,jpbsi) + zprorcad(ji,jj,jk) * zysopt(ji,jj,jk) * texcret2
tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + excret2 * zprorcad(ji,jj,jk) + excret * zprorca(ji,jj,jk)
tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) + o2ut * ( zproreg + zproreg2) &
& + ( o2ut + o2nit ) * ( zpronew(ji,jj,jk) + zpronewd(ji,jj,jk) )
tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - texcret * zprofen(ji,jj,jk) - texcret2 * zprofed(ji,jj,jk)
tra(ji,jj,jk,jpsil) = tra(ji,jj,jk,jpsil) - texcret2 * zprorcad(ji,jj,jk) * zysopt(ji,jj,jk)
tra(ji,jj,jk,jpdic) = tra(ji,jj,jk,jpdic) - zprorca(ji,jj,jk) - zprorcad(ji,jj,jk)
tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + rno3 * ( zpronew(ji,jj,jk) + zpronewd(ji,jj,jk) ) &
& - rno3 * ( zproreg + zproreg2 )
END DO
END DO
END DO
! Total primary production per year
tpp = tpp + glob_sum( ( zprorca(:,:,:) + zprorcad(:,:,:) ) * cvol(:,:,:) )
tpp2 = tpp
IF( kt == nitend .AND. jnt == nrdttrc ) THEN
WRITE(numout,*) 'Total PP (Gtc) :'
WRITE(numout,*) '-------------------- : ',tpp * 12. / 1.E12
WRITE(numout,*)
ENDIF
IF( ln_diatrc ) THEN
!
zrfact2 = 1.e3 * rfact2r
IF( lk_iomput ) THEN
IF( jnt == nrdttrc ) THEN
CALL iom_put( "PPPHY" , zprorca (:,:,:) * zrfact2 * tmask(:,:,:) ) ! primary production by nanophyto
CALL iom_put( "PPPHY2", zprorcad(:,:,:) * zrfact2 * tmask(:,:,:) ) ! primary production by diatom
CALL iom_put( "PPNEWN", zpronew (:,:,:) * zrfact2 * tmask(:,:,:) ) ! new primary production by nanophyto
CALL iom_put( "PPNEWD", zpronewd(:,:,:) * zrfact2 * tmask(:,:,:) ) ! new primary production by diatom
CALL iom_put( "PCHLN" , zprochln (:,:,:) * zrfact2 * tmask(:,:,:) ) ! chl production by nanophyto
CALL iom_put( "PCHLD", zprochld(:,:,:) * zrfact2 * tmask(:,:,:) ) ! chl production by diatom
CALL iom_put( "PBSi" , zprorcad(:,:,:) * zrfact2 * tmask(:,:,:) * zysopt(:,:,:) ) ! biogenic silica production
CALL iom_put( "PFeD" , zprofed (:,:,:) * zrfact2 * tmask(:,:,:) ) ! biogenic iron production by diatom
CALL iom_put( "PFeN" , zprofen (:,:,:) * zrfact2 * tmask(:,:,:) ) ! biogenic iron production by nanophyto
CALL iom_put( "Mumax" , myvar(:,:,:) * zrfact2 * tmask(:,:,:) ) ! Maximum growth rate
CALL iom_put( "MuN" , zprbio(:,:,:) * zrfact2 * tmask(:,:,:) ) ! Realized growth rate for nanophyto
CALL iom_put( "MuD" , zprdia(:,:,:) * zrfact2 * tmask(:,:,:) ) ! Realized growth rate for diatoms
CALL iom_put( "LNnut" , xlimphy (:,:,:) * tmask(:,:,:) ) ! Nutrient limitation term
CALL iom_put( "LDnut" , xlimdia (:,:,:) * tmask(:,:,:) ) ! Nutrient limitation term
CALL iom_put( "LNFe" , xlimnfe (:,:,:) * tmask(:,:,:) ) ! Iron limitation term
CALL iom_put( "LDFe" , xlimdfe (:,:,:) * tmask(:,:,:) ) ! Iron limitation term
CALL iom_put( "LNlight", xlimLN (:,:,:) * tmask(:,:,:) ) ! (1 - exp) growth rate term Nano
CALL iom_put( "LDlight", xlimLD (:,:,:) * tmask(:,:,:) ) ! (1 - exp) growth rate term Diat
CALL iom_put( "GmxlN" , gmxlN (:,:,:) * tmask(:,:,:) ) ! MLD > Heup penal for nano
CALL iom_put( "GmxlD" , gmxlD (:,:,:) * tmask(:,:,:) ) ! MLD > Heup penal for diat
ENDIF
ELSE
trc3d(:,:,:,jp_pcs0_3d + 4) = zprorca (:,:,:) * zrfact2 * tmask(:,:,:)
trc3d(:,:,:,jp_pcs0_3d + 5) = zprorcad(:,:,:) * zrfact2 * tmask(:,:,:)
trc3d(:,:,:,jp_pcs0_3d + 6) = zpronew (:,:,:) * zrfact2 * tmask(:,:,:)
trc3d(:,:,:,jp_pcs0_3d + 7) = zpronewd(:,:,:) * zrfact2 * tmask(:,:,:)
trc3d(:,:,:,jp_pcs0_3d + 8) = zprorcad(:,:,:) * zrfact2 * tmask(:,:,:) * zysopt(:,:,:)
trc3d(:,:,:,jp_pcs0_3d + 9) = zprofed (:,:,:) * zrfact2 * tmask(:,:,:)
# if ! defined key_kriest
trc3d(:,:,:,jp_pcs0_3d + 10) = zprofen (:,:,:) * zrfact2 * tmask(:,:,:)
# endif
ENDIF
!
ENDIF
IF(ln_ctl) THEN ! print mean trends (used for debugging)
WRITE(charout, FMT="('prod')")
CALL prt_ctl_trc_info(charout)
CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm)
ENDIF
!
CALL wrk_dealloc( jpi, jpj, zmixnano, zmixdiat, zstrn )
CALL wrk_dealloc( jpi, jpj, jpk, zpislopead, zpislopead2, zprdia, zprbio, zprdch, zprnch, zysopt )
CALL wrk_dealloc( jpi, jpj, jpk, zprorca, zprorcad, zprofed, zprofen, zprochln, zprochld, zpronew, zpronewd )
!
IF( nn_timing == 1 ) CALL timing_stop('p4z_prod')
!
END SUBROUTINE p4z_prod
SUBROUTINE p4z_prod_init
!!----------------------------------------------------------------------
!! *** ROUTINE p4z_prod_init ***
!!
!! ** Purpose : Initialization of phytoplankton production parameters
!!
!! ** Method : Read the nampisprod namelist and check the parameters
!! called at the first timestep (nittrc000)
!!
!! ** input : Namelist nampisprod
!!----------------------------------------------------------------------
!
NAMELIST/nampisprod/ pislope, pislope2, ln_newprod, bresp, excret, excret2, &
& chlcnm, chlcdm, chlcmin, fecnm, fecdm, grosip
!!----------------------------------------------------------------------
REWIND( numnatp ) ! read numnatp
READ ( numnatp, nampisprod )
IF(lwp) THEN ! control print
WRITE(numout,*) ' '
WRITE(numout,*) ' Namelist parameters for phytoplankton growth, nampisprod'
WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
WRITE(numout,*) ' Enable new parame. of production (T/F) ln_newprod =', ln_newprod
WRITE(numout,*) ' mean Si/C ratio grosip =', grosip
WRITE(numout,*) ' P-I slope pislope =', pislope
WRITE(numout,*) ' excretion ratio of nanophytoplankton excret =', excret
WRITE(numout,*) ' excretion ratio of diatoms excret2 =', excret2
IF( ln_newprod ) THEN
WRITE(numout,*) ' basal respiration in phytoplankton bresp =', bresp
WRITE(numout,*) ' Maximum Chl/C in phytoplankton chlcmin =', chlcmin
ENDIF
WRITE(numout,*) ' P-I slope for diatoms pislope2 =', pislope2
WRITE(numout,*) ' Minimum Chl/C in nanophytoplankton chlcnm =', chlcnm
WRITE(numout,*) ' Minimum Chl/C in diatoms chlcdm =', chlcdm
WRITE(numout,*) ' Maximum Fe/C in nanophytoplankton fecnm =', fecnm
WRITE(numout,*) ' Minimum Fe/C in diatoms fecdm =', fecdm
ENDIF
!
r1_rday = 1._wp / rday
texcret = 1._wp - excret
texcret2 = 1._wp - excret2
tpp = 0._wp
!
END SUBROUTINE p4z_prod_init
INTEGER FUNCTION p4z_prod_alloc()
!!----------------------------------------------------------------------
!! *** ROUTINE p4z_prod_alloc ***
!!----------------------------------------------------------------------
ALLOCATE( prmax(jpi,jpj,jpk), quotan(jpi,jpj,jpk), quotad(jpi,jpj,jpk), STAT = p4z_prod_alloc )
ALLOCATE( myvar(jpi,jpj,jpk), STAT = p4z_prod_alloc )
!
IF( p4z_prod_alloc /= 0 ) CALL ctl_warn('p4z_prod_alloc : failed to allocate arrays.')
!
END FUNCTION p4z_prod_alloc
#else
!!======================================================================
!! Dummy module : No PISCES bio-model
!!======================================================================
CONTAINS
SUBROUTINE p4z_prod ! Empty routine
END SUBROUTINE p4z_prod
#endif
!!======================================================================
END MODULE p4zprod