forked from olivercliff/assessing-linear-dependence
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpcorr.m
111 lines (98 loc) · 4.43 KB
/
pcorr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
function [coeff,pval,dist,stats] = pcorr(X,Y,varargin)
%PC Correlation (partial or Pearson) for vector AR processes.
% PR = PCORR(X,Y) returns the scalar estimate of the correlation
% between the N-by-1 vectors X and Y.
%
% PR = PCORR(X,Y,W,...) returns the scalar estimate of partial
% correlation between X and Y conditioned on the N-by-C matrix W.
%
% [PR,PVAL] = PCORR(...) also returns PVAL, the p-value for testing the
% hypothesis of no correlation
%
% [...] = PCORR(...,'PARAM1',VAL1,'PARAM2',VAL2,...) specifies additional
% parameters and their values. Valid parameters are the following:
%
% Parameter Value
% 'test' 'modified' (the default) uses our
% modified t-test,
% 'finite' or 'asymptotic'
% uses the two-tailed t-test.
% 'surrogates' Integer denoting the number of
% surrogates used in generating the
% numerical null distributions.
% 'varianceEstimator' 'bartlett' (default) uses Bartlett's
% formula assuming no
% cross-correlations, 'roy' makes no
% assumptions about cross-correlations.
% 'taperMethod' 'none' (default) to compute
% sample autocorrelations without
% tapering, 'tukey' to use the Tukey
% windowing, 'parzen' for Parzen
% windows, or 'bartlett' to use
% Barttlett's correction.
% 'multivariateBartlett' False (default) to assume all pairs
% of correlations are independent, and
% true to Bartlett correct for full
% covariance matrix.
%
% Example:
% % Compute the sample correlation between X and Y and obtain
% % both Student's t-test p-value and the exact test p-value.
% % (these values should be similar)
% X = randn(100,1);
% Y = randn(100,1);
% [PR,PVAL] = PCORR(X,Y)
% [PR,PVAL] = PCORR(X,Y,'test','finite')
% ------------------------------------------------------------------------------
% Copyright (C) 2020, Oliver M. Cliff <oliver.m.cliff@gmail.com>,
%
% If you use this code for your research, please cite the following paper:
%
% Oliver M. Cliff, Leonardo Novelli, Ben D Fulcher, James M. Shine,
% Joseph T. Lizier, "Assessing the significance of directed and multivariate
% measures of linear dependence between time series," Phys. Rev. Research 3,
% 013145 (2021).
%
% This function is free software: you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation, either version 3 of the License, or (at your option) any later
% version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
% details.
%
% You should have received a copy of the GNU General Public License along with
% this program. If not, see <http://www.gnu.org/licenses/>.
% ------------------------------------------------------------------------------
parser = inputParser;
addRequired(parser,'X',@isvector);
addRequired(parser,'Y',@isvector);
addOptional(parser,'W',[],@(x) (isnumeric(x) && ismatrix(x)));
parser = parseParameters(parser,X,Y,varargin{:});
params = varargin;
if ~contains(parser.UsingDefaults,'W')
params = varargin(2:end);
end
[pr,resids,cs] = pcd(X,Y,parser.Results.W,params{:});
coeff = sum(pr);
if nargout > 1
[eta,ess] = bartlett(resids,parser.Results.taperMethod,parser.Results.multivariateBartlett);
% Outputs for computing the significance (variance estimation and number of
% condtiionals)
stats.N_e = ess;
stats.eta = eta;
stats.cs = cs;
stats.mv = parser.Results.multivariateBartlett;
stats.dof = length(cs);
stats.N_o = length(X);
stats.cmi = false;
coeff = sum(pr);
sig = @(coeff,stats) significance(coeff,stats,params{:});
if nargout > 2
[pval,dist] = sig(coeff,stats);
else
pval = sig(coeff,stats);
end
end