-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdemo_LFSSR.py
157 lines (119 loc) · 5.77 KB
/
demo_LFSSR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
import torch.utils.data as data
from torch.utils.data import DataLoader
import argparse
import numpy as np
import os
from os.path import join
import math
import copy
import pandas as pd
import time
import h5py
import cv2
from PIL import Image
import matplotlib
matplotlib.use('Agg')
from skimage.measure import compare_ssim
from model.model_LFSSR import LFSSRNet
from utils import dataset, util
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Test settings
parser = argparse.ArgumentParser(description="LFSSR-ATO demo")
parser.add_argument("--model_dir", type=str, default="pretrained_models", help="folder containing the pretrained models")
parser.add_argument("--save_dir", type=str, default="results", help="folder to save the test results")
parser.add_argument("--scale", type=int, default=4, help="SR factor")
parser.add_argument("--test_dataset", type=str, default="", help="dataset for test")
parser.add_argument("--angular_num", type=int, default=9, help="Size of angular dim")
parser.add_argument("--save_img", type=int, default=0, help="save image or not")
parser.add_argument("--crop", type=int, default=0, help="crop the image into patches when out of memory")
parser.add_argument("--feature_num", type=int, default=64, help="number of feature channels")
parser.add_argument('--layer_num', action=util.StoreAsArray, type=int, nargs='+', help="number of layers in resBlocks")
parser.add_argument('--layer_num_refine', type=int, default=3, help="number of refine SAS layers")
opt = parser.parse_args()
print(opt)
def main():
# generate save folder
if not os.path.exists(opt.save_dir):
os.mkdir(opt.save_dir)
if opt.save_img:
opt.save_img_dir = '{}/saveImg_LFSSR/{}_x{}'.format(opt.save_dir, opt.test_dataset, opt.scale)
if not os.path.exists(opt.save_img_dir):
os.makedirs(opt.save_img_dir)
opt.csv_name = '{}/res_LFSSR_{}_x{}.csv'.format(opt.save_dir, opt.test_dataset, opt.scale)
# Data loader
print('===> Loading test datasets')
data_path = join('LFData', 'test_{}_x{}.h5'.format(opt.test_dataset, opt.scale))
test_set = dataset.TestDataFromHdf5(data_path, opt.scale)
test_loader = DataLoader(dataset=test_set, batch_size=1, shuffle=False)
print('loaded {} LFIs from {}'.format(len(test_loader), data_path))
# Build model
print("===> Building net")
model = LFSSRNet(opt).to(device)
# load state dict
resume_path = join(opt.model_dir, "LFSSRNet_{}x.pth".format(opt.scale))
checkpoint = torch.load(resume_path)
model.load_state_dict(checkpoint['model'], strict=False)
print('loaded pretrained model'.format(resume_path))
# testing
print("===> testing")
model.eval()
lf_list = []
lf_psnr_y_list = []
lf_ssim_y_list = []
with torch.no_grad():
for k, batch in enumerate(test_loader):
# SR
gt_y, sr_ycbcr, lr_y = batch[0].numpy(), batch[1].numpy(), batch[2]
lr_y = lr_y.to(device)
start = time.time()
if not opt.crop:
sr_y = model(lr_y)
sr_y = sr_y.cpu().numpy()
else:
crop = 8
length = 120
lr_l, lr_m, lr_r = util.CropPatches(lr_y, length//opt.scale, crop//opt.scale)
sr_l = model(lr_l).cpu().numpy()
sr_m = np.zeros((lr_m.shape[0], opt.angular_num*opt.angular_num, lr_m.shape[2]*opt.scale, lr_m.shape[3]*opt.scale), dtype=np.float32)
for i in range(lr_m.shape[0]):
sr_m[i:i+1] = model(lr_m[i:i+1]).cpu().numpy()
sr_r = model(lr_r).cpu().numpy()
sr_y = util.MergePatches(sr_l, sr_m, sr_r, lr_y.shape[2]*opt.scale, lr_y.shape[3]*opt.scale, length, crop)
end = time.time()
print('running time: ', end - start)
# save results
lf_psnr, lf_ssim = save_results(sr_y, sr_ycbcr, gt_y, k)
lf_list.append(k)
lf_psnr_y_list.append(lf_psnr)
lf_ssim_y_list.append(lf_ssim)
dataframe_lfi = pd.DataFrame({'lfiNo': lf_list, 'psnr Y':lf_psnr_y_list, 'ssim Y':lf_ssim_y_list})
dataframe_lfi.to_csv(opt.csv_name, index=False, sep=',', mode='a')
dataframe_lfi = pd.DataFrame({'summary': ['avg'], 'psnr Y':[np.mean(lf_psnr_y_list)], 'ssim Y':[np.mean(lf_ssim_y_list)]})
dataframe_lfi.to_csv(opt.csv_name, index=False, sep=',', mode='a')
def save_results(sr_y, sr_ycbcr, gt_y, lf_no):
sr_ycbcr[:, :, 0] = sr_y
view_list = []
view_psnr_y_list = []
view_ssim_y_list = []
for i in range(opt.angular_num * opt.angular_num):
if opt.save_img:
save_img_dir = '{}/saveImg_ATO/{}_x{}'.format(opt.save_dir, opt.test_dataset, opt.scale)
if not os.path.exists(save_img_dir):
os.makedirs(save_img_dir)
img_name = '{}/SR{}_view{}.png'.format(opt.save_img_dir, lf_no, i)
sr_rgb_temp = util.ycbcr2rgb(np.transpose(sr_ycbcr[0, i], (1, 2, 0)))
img = (sr_rgb_temp.clip(0, 1) * 255.0).astype(np.uint8)
Image.fromarray(img).convert('RGB').save(img_name)
cur_psnr = util.compt_psnr(gt_y[0, i], sr_y[0, i])
cur_ssim = compare_ssim((gt_y[0, i] * 255.0).astype(np.uint8), (sr_y[0, i] * 255.0).astype(np.uint8),
gaussian_weights=True, sigma=1.5, use_sample_covariance=False)
view_list.append(i)
view_psnr_y_list.append(cur_psnr)
view_ssim_y_list.append(cur_ssim)
dataframe_lfi = pd.DataFrame({'View_LFI{}'.format(lf_no): view_list, 'psnr Y': view_psnr_y_list, 'ssim Y': view_ssim_y_list})
dataframe_lfi.to_csv(opt.csv_name, index=False, sep=',', mode='a')
return np.mean(view_psnr_y_list), np.mean(view_ssim_y_list)
if __name__ == '__main__':
main()