-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
220 lines (186 loc) · 5.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import os
import sys
import pytorch_lightning as pl
from pytorch_lightning import loggers as pl_loggers
from data.data import Vocab
from data.data import build_dataloader
from data.data import build_dataset
from models.model import SummarizationModel
from utils import *
def main(config):
# fix random seeds for reproducibility
SEED = 123
pl.seed_everything(SEED)
# generate experiment name
exp_name = generate_exp_name(config)
# Train
# 1. Load dataset, build or load vocab file
# if use pre-built vocab
if os.path.exists(config.path.vocab) and config.load_vocab:
load_vocab = config.path.vocab
else:
load_vocab = None
# 1-1. Training dataset
# If validation set is not specified, take 10% of training data as validation set
split_dev = 0.1 if config.path.val == '' else 0.0
(train_data, val_data), vocab = build_dataset(
data_path=config.path.train,
load_vocab=load_vocab,
config=config,
is_train=True,
split_dev=split_dev,
)
# save vocab file
vocab.save(os.path.join(f'logs/{exp_name}', config.path.vocab))
train_loader = build_dataloader(
dataset=train_data,
vocab=vocab,
batch_size=config.data_loader.batch_size.train,
max_decode=config.data.tgt_max_train,
is_train=True,
num_workers=config.data_loader.num_workers,
)
# 1-2. Load validation dataset
# For validation, we use NIKL
if val_data is None:
val_data = build_dataset(
data_path=config.path.val,
config=config,
is_train=False,
vocab=vocab
)
val_loader = build_dataloader(
dataset=val_data,
vocab=vocab,
batch_size=config.data_loader.batch_size.val,
max_decode=config.data.tgt_max_test,
is_train=False,
num_workers=config.data_loader.num_workers,
)
# 2. Build model instance
model = SummarizationModel(
config=config,
vocab=vocab,
)
# 3. Set logger, trainer
tb_logger = pl_loggers.TensorBoardLogger(
save_dir='logs/',
name=exp_name,
)
tb_logger.log_hyperparams(config)
if config.stop_with == 'loss':
monitor = 'val_loss_avg'
mode = 'min'
else:
which_rouge = config.stop_with[-1] # 1, 2 or l
monitor = f'rouge_{which_rouge}_avg'
mode = 'max'
filepath = '{epoch}-{' + monitor + ':.2f}'
checkpoint_callback = ModelCheckpoint(
filepath=os.path.join(f'logs/{exp_name}', filepath),
verbose=False,
monitor=monitor,
mode=mode,
save_top_k=5,
)
# early stopping
early_stop_callback = EarlyStopping(
monitor=monitor,
min_delta=0.00,
patience=10,
verbose=True,
mode=mode,
)
if config.device == -1:
gpus = None
else:
gpus = [config.device]
trainer = pl.Trainer(
logger=tb_logger,
callbacks=[early_stop_callback],
gpus=gpus,
resume_from_checkpoint=config.model_path,
max_epochs=config.trainer.epochs,
checkpoint_callback=checkpoint_callback,
gradient_clip_val=config.trainer.max_grad_norm,
log_every_n_steps=500,
)
# 4. Train!
trainer.fit(model, train_loader, val_loader)
# 5. Evaluation
test_data = build_dataset(
data_path=config.path.test,
config=config,
is_train=False,
vocab=vocab
)
test_loader = build_dataloader(
dataset=test_data,
vocab=vocab,
batch_size=1,
max_decode=config.data.tgt_max_test,
is_train=False,
num_workers=config.data_loader.num_workers,
)
test_outputs = trainer.test(model, test_loader)
output_name = generate_output_name(config)
write_output(test_loader=test_loader,
test_outputs=test_outputs,
fname=os.path.join(f'logs/{exp_name}', output_name))
if __name__ == "__main__":
args = argparse.ArgumentParser(description='Pointer-generator network')
args.add_argument(
'-cp', '--config-path',
default='config.json',
type=str,
help='path to config file'
)
args.add_argument(
'--mds',
default=None,
type=str,
help='multi-news labeling method to employ. if None, nikl dataset is used.'
)
args.add_argument(
'-m', '--model-path',
default=None,
type=str,
help='path to load model'
)
args.add_argument(
'--load-vocab',
action='store_true',
default=False,
help='whether to load pre-built vocab file'
)
args.add_argument(
'--stop-with',
default='rl',
type=str,
choices=['loss', 'r1', 'r2', 'rl'],
help='validation evaluation metric to perform early stopping'
)
args.add_argument(
'-e', '--exp-name',
default='',
type=str,
help='suffix to specify experiment name'
)
args.add_argument(
'-d', '--device',
default=-1,
type=int,
help='gpu device number to use. if cpu, set this argument to -1'
)
args.add_argument(
'-n', '--note',
default='',
type=str,
help='note to append to result output file name'
)
sys.path.append(
os.path.dirname(os.path.abspath(os.path.dirname("__file__")))
)
config = config_parser(args.parse_args())
main(config)