forked from zhangming8/yolox-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
238 lines (204 loc) · 11.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# -*- coding: utf-8 -*-
# @Time : 2021/7/21 20:00
# @Author : MingZhang
# @Email : zm19921120@126.com
from __future__ import print_function, division
import os
import shutil
import cv2
import time
import numpy as np
from progress.bar import Bar
import torch
import torch.nn as nn
from config import opt
from data.coco_dataset import get_dataloader
from models.yolox import get_model
from utils.lr_scheduler import LRScheduler
from utils.util import AverageMeter, write_log, configure_module
from utils.model_utils import EMA, save_model, load_model, ensure_same, clip_grads
from utils.data_parallel import set_device
from utils.logger import Logger
def run_epoch(model_with_loss, optimizer, scaler, ema, phase, epoch, data_iter, num_iter, total_iter,
train_loader=None, lr_scheduler=None, accumulate=1):
if phase == 'train':
model_with_loss.train()
else:
model_with_loss.eval()
torch.cuda.empty_cache()
results = {}
data_time, batch_time = AverageMeter(), AverageMeter()
avg_loss_stats = {}
bar = Bar('{}'.format(opt.exp_id), max=num_iter)
end = time.time()
last_opt_iter = 0
optimizer.zero_grad() if phase == 'train' else ""
for iter_id in range(1, num_iter + 1):
# load data
inps, targets, img_info, ind = next(data_iter)
inps = inps.to(device=opt.device, non_blocking=True)
targets = targets.to(device=opt.device, non_blocking=True)
data_time.update(time.time() - end)
# inference and call loss
return_pred = phase != 'train' and "ap" in opt.metric and opt.val_intervals > 0 and epoch % opt.val_intervals == 0
img_ratio = [float(min(opt.test_size[0] / img_info[0][i], opt.test_size[1] / img_info[1][i])) for i in
range(inps.shape[0])] if return_pred else None
preds, loss_stats = model_with_loss(inps, targets=targets, return_loss=True, return_pred=return_pred,
ratio=img_ratio, vis_thresh=0.01)
loss_stats = {k: v.mean() for k, v in loss_stats.items()}
if phase == 'train':
iteration = (epoch - 1) * num_iter + iter_id
scaler.scale(loss_stats["loss"]).backward()
if iteration - last_opt_iter >= accumulate or iter_id == num_iter:
if opt.grad_clip is not None:
scaler.unscale_(optimizer)
grad_normal = clip_grads(model_with_loss, opt.grad_clip)
if not opt.use_amp:
loss_stats['grad_normal'] = grad_normal
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
ema.update_params() if ema else ''
last_opt_iter = iteration
lr = lr_scheduler.update_lr(iteration)
for param_group in optimizer.param_groups:
param_group["lr"] = lr
if (iteration - 1) % 50 == 0 and epoch <= 10:
logger.scalar_summary("lr_iter_before_10_epoch", lr, iteration)
else:
iteration, total_iter = iter_id, num_iter
lr = optimizer.param_groups[0]['lr']
batch_time.update(time.time() - end)
end = time.time()
if return_pred:
for img_id, pred in zip(ind.cpu().numpy().tolist(), preds):
results[img_id] = pred
shapes = "x".join([str(i) for i in inps.shape])
Bar.suffix = '{phase}: total_epoch[{0}/{1}] total_batch[{2}/{3}] batch[{4}/{5}] |size: {6} |lr: {7} |Tot: ' \
'{total:} |ETA: {eta:} '.format(epoch, opt.num_epochs, iteration, total_iter, iter_id, num_iter,
shapes, "{:.8f}".format(lr), phase=phase, total=bar.elapsed_td,
eta=bar.eta_td)
for l in loss_stats:
if l not in avg_loss_stats:
avg_loss_stats[l] = AverageMeter()
avg_loss_stats[l].update(loss_stats[l], inps.size(0))
Bar.suffix = Bar.suffix + '|{} {:.4f} '.format(l, avg_loss_stats[l].avg)
if opt.print_iter > 0 and iter_id % opt.print_iter == 0:
print('{}| {}'.format(opt.exp_id, Bar.suffix))
logger.write('{}| {}\n'.format(opt.exp_id, Bar.suffix))
else:
bar.next()
# random resizing
if phase == 'train' and opt.random_size is not None and (iteration % 10 == 0 or iteration <= 20):
tensor = torch.LongTensor(2).to(device=opt.device)
size_factor = opt.input_size[1] * 1. / opt.input_size[0]
size = np.random.randint(*opt.random_size)
size = (int(32 * size), 32 * int(size * size_factor))
tensor[0], tensor[1] = size[0], size[1]
if iteration <= 10:
# initialize with max size, in case of out of memory during training
tensor[0], tensor[1] = int(max(opt.random_size) * 32), int(max(opt.random_size) * 32)
input_size = train_loader.change_input_dim(multiple=(tensor[0].item(), tensor[1].item()), random_range=None)
bar.finish()
ret = {k: v.avg for k, v in avg_loss_stats.items()}
ret['time'] = bar.elapsed_td.total_seconds() / 60.
return ret, results
def train(model, scaler, train_loader, val_loader, optimizer, lr_scheduler, start_epoch, accumulate, no_aug):
best = 1e10 if opt.metric == "loss" else -1
iter_per_train_epoch = len(train_loader)
iter_per_val_epoch = len(val_loader)
# initialize data loader
train_iter = iter(train_loader)
total_train_iteration = opt.num_epochs * iter_per_train_epoch
# exponential moving average
ema = EMA(model) if opt.ema else None
for epoch in range(start_epoch + 1, opt.num_epochs + 1):
if epoch == opt.num_epochs - opt.no_aug_epochs or no_aug:
logger.write("--->No mosaic aug now! epoch {}\n".format(epoch))
train_loader.close_mosaic()
if isinstance(model, torch.nn.DataParallel):
model.module.loss.use_l1 = True
else:
model.loss.use_l1 = True
opt.val_intervals = 1
logger.write("--->Add additional L1 loss now! epoch {}\n".format(epoch))
logger.scalar_summary("lr_epoch", optimizer.param_groups[0]['lr'], epoch)
loss_dict_train, _ = run_epoch(model, optimizer, scaler, ema, "train", epoch, train_iter, iter_per_train_epoch,
total_train_iteration, train_loader, lr_scheduler, accumulate)
logger.write('train epoch: {} |'.format(epoch))
write_log(loss_dict_train, logger, epoch, "train")
ema.apply_shadow() if ema is not None else ""
if opt.val_intervals > 0 and epoch % opt.val_intervals == 0:
save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)), epoch, model)
logger.write('----------epoch {} evaluating----------\n'.format(epoch))
with torch.no_grad():
loss_dict_val, preds = run_epoch(model, optimizer, None, None, "val", epoch, iter(val_loader),
iter_per_val_epoch, iter_per_val_epoch)
logger.write('----------epoch {} evaluate done----------\n'.format(epoch))
logger.write('val epoch: {} |'.format(epoch))
write_log(loss_dict_val, logger, epoch, "val")
if "ap" in opt.metric.lower():
ap, ap_0_5 = val_loader.dataset.run_coco_eval(preds, opt.save_dir)
logger.write(
"Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = {:.3f}\n".format(ap))
logger.write(
"Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = {:.3f}\n".format(ap_0_5))
logger.scalar_summary("val_AP", ap, epoch)
logger.scalar_summary("val_AP_05", ap_0_5, epoch)
if ap >= best:
best = ap
save_model(os.path.join(opt.save_dir, 'model_best.pth'), epoch, model)
elif opt.metric == "loss":
if loss_dict_val['loss'] <= best:
best = loss_dict_val['loss']
save_model(os.path.join(opt.save_dir, 'model_best.pth'), epoch, model)
save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)), epoch,
model) if epoch % opt.save_epoch == 0 else ""
save_model(os.path.join(opt.save_dir, 'model_last.pth'), epoch, model, optimizer, scaler)
ema.restore() if ema is not None else ""
logger.close()
def main():
# define model with loss
model = get_model(opt)
# define optimizer
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in model.named_modules():
if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter):
pg2.append(v.bias) # biases
if isinstance(v, nn.BatchNorm2d) or "bn" in k:
pg0.append(v.weight) # no decay
elif hasattr(v, "weight") and isinstance(v.weight, nn.Parameter):
pg1.append(v.weight) # apply decay
lr = opt.warmup_lr if opt.warmup_epochs > 0 else opt.basic_lr_per_img * opt.batch_size
optimizer = torch.optim.SGD(pg0, lr=lr, momentum=opt.momentum, nesterov=True)
optimizer.add_param_group({"params": pg1, "weight_decay": opt.weight_decay}) # add pg1 with weight_decay
optimizer.add_param_group({"params": pg2})
# Automatic mixed precision
scaler = torch.cuda.amp.GradScaler(enabled=opt.use_amp, init_scale=2. ** 16)
# fine-tune or resume
start_epoch = 0
if opt.load_model != '':
model, optimizer, start_epoch, scaler = load_model(model, opt.load_model, optimizer, scaler, opt.resume)
# define loader
no_aug = start_epoch >= opt.num_epochs - opt.no_aug_epochs
train_loader, val_loader = get_dataloader(opt, no_aug=no_aug)
dataset_label = val_loader.dataset.classes
assert opt.label_name == dataset_label, "[ERROR] 'opt.label_name' should be the same as dataset's {} != {}".format(
opt.label_name, dataset_label)
# learning ratio scheduler
base_lr = opt.basic_lr_per_img * opt.batch_size
lr_scheduler = LRScheduler(opt.scheduler, base_lr, len(train_loader), opt.num_epochs,
warmup_epochs=opt.warmup_epochs, warmup_lr_start=opt.warmup_lr,
no_aug_epochs=opt.no_aug_epochs, min_lr_ratio=opt.min_lr_ratio)
# DP
opt.device = torch.device('cuda' if opt.gpus[0] >= 0 else 'cpu')
model, optimizer = set_device(model, optimizer, opt)
train(model, scaler, train_loader, val_loader, optimizer, lr_scheduler, start_epoch, opt.accumulate, no_aug)
if __name__ == "__main__":
configure_module()
np.random.seed(opt.seed)
torch.manual_seed(opt.seed)
torch.backends.cudnn.benchmark = opt.cuda_benchmark
logger = Logger(opt)
shutil.copyfile("./config.py", logger.log_path + "/config.py")
main()