-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path108ConvertSortedArrayToBinarySearchTree.cs
81 lines (68 loc) · 2.73 KB
/
108ConvertSortedArrayToBinarySearchTree.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace _108ConvertSortedArrayToBinarySearchTree
{
public class TreeNode
{
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int v)
{
val = v;
}
}
class Program
{
static void Main(string[] args)
{
}
/*
* Reference for source code and analysis:
* http://blog.csdn.net/linhuanmars/article/details/23904883
*
* analysis from the above blog:
* 这道题是二分查找树的题目,要把一个有序数组转换成一颗二分查找树。
* 其实从本质来看,如果把一个数组看成一棵树(也就是以中点为根,左右为
* 左右子树,依次下去)数组就等价于一个二分查找树。所以如果要构造这棵树,
* 那就是把中间元素转化为根,然后递归构造左右子树。所以我们还是用二叉树
* 递归的方法来实现,以根作为返回值,每层递归函数取中间元素,作为当前根
* 和赋上结点值,然后左右结点接上左右区间的递归函数返回值。时间复杂度还是
* 一次树遍历O(n),总的空间复杂度是栈空间O(logn)加上结果的空间O(n),
* 额外空间是O(logn),总体是O(n).
*
* 这是一道不错的题目,模型简单,但是考察了遍历和二分查找树的数据结构
*
* Julis's comment:
* 1. use the array start and end index is smart choice, for diving two subtrees.
* 2. use the root index as variable, for two subtree calculation
* 3. pass online judge
* 32 / 32 test cases passed.
Status: Accepted
Runtime: 172 ms
*/
public static TreeNode sortedArrayToBST(int[] nums)
{
if (nums == null || nums.Length == 0)
return null;
return helper(nums, 0, nums.Length - 1);
}
private static TreeNode helper(int[] nums, int start, int end)
{
if (start > end)
return null;
int root_I = (start + end) / 2; // root index
int l_Start = start; // left subtree start index
int l_End = root_I - 1; // right subtree end index
int r_Start = root_I + 1;
int r_End = end;
TreeNode root = new TreeNode(nums[root_I]);
root.left = helper(nums, l_Start, l_End);
root.right = helper(nums, r_Start, r_End);
return root;
}
}
}