forked from meyerscetbon/Deep-K-SVD
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDKSVD_train_model.py
172 lines (147 loc) · 4.76 KB
/
DKSVD_train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
"""
import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
import time
import Deep_KSVD
from scipy import linalg
# List of the test image names BSD68:
file_test = open("test_gray.txt", "r")
onlyfiles_test = []
for e in file_test:
onlyfiles_test.append(e[:-1])
# List of the train image names:
file_train = open("train_gray.txt", "r")
onlyfiles_train = []
for e in file_train:
onlyfiles_train.append(e[:-1])
# Rescaling in [-1, 1]:
mean = 255 / 2
std = 255 / 2
data_transform = transforms.Compose(
[Deep_KSVD.Normalize(mean=mean, std=std), Deep_KSVD.ToTensor()]
)
# Noise level:
sigma = 25
# Sub Image Size:
sub_image_size = 128
# Training Dataset:
my_Data_train = Deep_KSVD.mydataset_sub_images(
root_dir="gray",
image_names=onlyfiles_train,
sub_image_size=sub_image_size,
sigma=sigma,
transform=data_transform,
)
# Test Dataset:
my_Data_test = Deep_KSVD.mydataset_full_images(
root_dir="gray", image_names=onlyfiles_test, sigma=sigma, transform=data_transform
)
# Dataloader of the test set:
num_images_test = 5
indices_test = np.random.randint(0, 68, num_images_test).tolist()
my_Data_test_sub = torch.utils.data.Subset(my_Data_test, indices_test)
dataloader_test = DataLoader(
my_Data_test_sub, batch_size=1, shuffle=False, num_workers=0
)
# Dataloader of the training set:
batch_size = 1
dataloader_train = DataLoader(
my_Data_train, batch_size=batch_size, shuffle=True, num_workers=0
)
# Create a file to see the output during the training:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
file_to_print = open("results_training.csv", "w")
file_to_print.write(str(device) + "\n")
file_to_print.flush()
# Initialization:
patch_size = 8
m = 16
Dict_init = Deep_KSVD.Init_DCT(patch_size, m)
Dict_init = Dict_init.to(device)
c_init = linalg.norm(Dict_init, ord=2) ** 2
c_init = torch.FloatTensor((c_init,))
c_init = c_init.to(device)
w_init = torch.normal(mean=1, std=1 / 10 * torch.ones(patch_size ** 2)).float()
w_init = w_init.to(device)
D_in, H_1, H_2, H_3, D_out_lam, T, min_v, max_v = 64, 128, 64, 32, 1, 5, -1, 1
model = Deep_KSVD.DenoisingNet_MLP(
patch_size,
D_in,
H_1,
H_2,
H_3,
D_out_lam,
T,
min_v,
max_v,
Dict_init,
c_init,
w_init,
device,
)
model.to(device)
# Construct our loss function and an Optimizer:
criterion = torch.nn.MSELoss(reduction="mean")
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
start = time.time()
epochs = 3
running_loss = 0.0
print_every = 1
train_losses, test_losses = [], []
for epoch in range(epochs): # loop over the dataset multiple times
for i, (sub_images, sub_images_noise) in enumerate(dataloader_train, 0):
# get the inputs
sub_images, sub_images_noise = (
sub_images.to(device),
sub_images_noise.to(device),
)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(sub_images_noise)
loss = criterion(outputs, sub_images)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % print_every == print_every - 1: # print every x mini-batches
train_losses.append(running_loss / print_every)
end = time.time()
time_curr = end - start
file_to_print.write("time:" + " " + str(time_curr) + "\n")
start = time.time()
with torch.no_grad():
test_loss = 0
for patches_t, patches_noise_t in dataloader_test:
patches, patches_noise = (
patches_t.to(device),
patches_noise_t.to(device),
)
outputs = model(patches_noise)
loss = criterion(outputs, patches)
test_loss += loss.item()
test_loss = test_loss / len(dataloader_test)
end = time.time()
time_curr = end - start
file_to_print.write("time:" + " " + str(time_curr) + "\n")
start = time.time()
test_losses.append(test_loss)
s = "[%d, %d] loss_train: %f, loss_test: %f" % (
epoch + 1,
(i + 1) * batch_size,
running_loss / print_every,
test_loss,
)
s = s + "\n"
file_to_print.write(s)
file_to_print.flush()
running_loss = 0.0
if i % (10 * print_every) == (10 * print_every) - 1:
torch.save(model.state_dict(), "model.pth")
np.savez(
"losses.npz", train=np.array(test_losses), test=np.array(train_losses)
)
file_to_print.write("Finished Training")