diff --git a/docs/source/models/supported_models.md b/docs/source/models/supported_models.md
index 5497b5dba76e0..ae851c35e6266 100644
--- a/docs/source/models/supported_models.md
+++ b/docs/source/models/supported_models.md
@@ -854,7 +854,7 @@ See [this page](#generative-models) for more information on how to use generativ
* Qwen2.5-VL
* T + IE+ + VE+
* `Qwen/Qwen2.5-VL-3B-Instruct`, `Qwen/Qwen2.5-VL-72B-Instruct`, etc.
- *
+ * ✅︎
* ✅︎
* ✅︎
- * `UltravoxModel`
diff --git a/tests/lora/conftest.py b/tests/lora/conftest.py
index 5ea66518b4112..92ff52b839ed8 100644
--- a/tests/lora/conftest.py
+++ b/tests/lora/conftest.py
@@ -237,6 +237,11 @@ def qwen2vl_lora_files():
return snapshot_download(repo_id="jeeejeee/qwen2-vl-lora-pokemon")
+@pytest.fixture(scope="session")
+def qwen25vl_lora_files():
+ return snapshot_download(repo_id="jeeejeee/qwen25-vl-lora-pokemon")
+
+
@pytest.fixture(scope="session")
def tinyllama_lora_files():
return snapshot_download(repo_id="jashing/tinyllama-colorist-lora")
diff --git a/tests/lora/test_qwen2vl.py b/tests/lora/test_qwen2vl.py
index a988f06ab25f0..1cf1534e40367 100644
--- a/tests/lora/test_qwen2vl.py
+++ b/tests/lora/test_qwen2vl.py
@@ -1,83 +1,143 @@
# SPDX-License-Identifier: Apache-2.0
-
-from typing import List
+from dataclasses import dataclass
+from typing import Dict, List, Optional
import pytest
+from packaging.version import Version
+from transformers import __version__ as TRANSFORMERS_VERSION
import vllm
from vllm.assets.image import ImageAsset
from vllm.lora.request import LoRARequest
from vllm.platforms import current_platform
-MODEL_PATH = "Qwen/Qwen2-VL-2B-Instruct"
-PROMPT_TEMPLATE = (
- "<|im_start|>system\nYou are a helpful assistant.<|im_end|>"
- "\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>"
- "What is in the image?<|im_end|>\n"
- "<|im_start|>assistant\n")
+@dataclass
+class TestConfig:
+ model_path: str
+ lora_path: str
+ max_num_seqs: int = 2
+ max_loras: int = 2
+ max_lora_rank: int = 16
+ max_model_len: int = 4096
+ mm_processor_kwargs: Optional[Dict[str, int]] = None
+
+ def __post_init__(self):
+ if self.mm_processor_kwargs is None:
+ self.mm_processor_kwargs = {
+ "min_pixels": 28 * 28,
+ "max_pixels": 1280 * 28 * 28,
+ }
+
+
+class Qwen2VLTester:
+ """Test helper for Qwen2 VL models with LoRA"""
+
+ PROMPT_TEMPLATE = (
+ "<|im_start|>system\nYou are a helpful assistant.<|im_end|>"
+ "\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>"
+ "What is in the image?<|im_end|>\n"
+ "<|im_start|>assistant\n")
+
+ def __init__(self, config: TestConfig):
+ self.config = config
+ self.llm = self._initialize_llm()
+
+ def _initialize_llm(self) -> vllm.LLM:
+ """Initialize the LLM with given configuration"""
+ return vllm.LLM(
+ model=self.config.model_path,
+ max_num_seqs=self.config.max_num_seqs,
+ enable_lora=True,
+ max_loras=self.config.max_loras,
+ max_lora_rank=self.config.max_lora_rank,
+ trust_remote_code=True,
+ mm_processor_kwargs=self.config.mm_processor_kwargs,
+ max_model_len=self.config.max_model_len,
+ )
+
+ def run_test(self,
+ images: List[ImageAsset],
+ expected_outputs: List[str],
+ lora_id: Optional[int] = None,
+ temperature: float = 0,
+ max_tokens: int = 5) -> List[str]:
+
+ sampling_params = vllm.SamplingParams(
+ temperature=temperature,
+ max_tokens=max_tokens,
+ )
+ inputs = [{
+ "prompt": self.PROMPT_TEMPLATE,
+ "multi_modal_data": {
+ "image": asset.pil_image
+ },
+ } for asset in images]
+
+ lora_request = LoRARequest(str(lora_id), lora_id,
+ self.config.lora_path)
+ outputs = self.llm.generate(inputs,
+ sampling_params,
+ lora_request=lora_request)
+ generated_texts = [
+ output.outputs[0].text.strip() for output in outputs
+ ]
-IMAGE_ASSETS = [
+ # Validate outputs
+ for generated, expected in zip(generated_texts, expected_outputs):
+ assert expected.startswith(
+ generated), f"Generated text {generated} doesn't "
+ f"match expected pattern {expected}"
+
+ return generated_texts
+
+
+TEST_IMAGES = [
ImageAsset("stop_sign"),
ImageAsset("cherry_blossom"),
]
-# After fine-tuning with LoRA, all generated content should start begin `A`.
-EXPECTED_OUTPUT = [
+EXPECTED_OUTPUTS = [
"A red stop sign stands prominently in the foreground, with a traditional Chinese gate and a black SUV in the background, illustrating a blend of modern and cultural elements.", # noqa: E501
"A majestic skyscraper stands tall, partially obscured by a vibrant canopy of cherry blossoms, against a clear blue sky.", # noqa: E501
]
-
-def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
- sampling_params = vllm.SamplingParams(
- temperature=0,
- max_tokens=5,
- )
-
- inputs = [{
- "prompt": PROMPT_TEMPLATE,
- "multi_modal_data": {
- "image": asset.pil_image
- },
- } for asset in IMAGE_ASSETS]
-
- outputs = llm.generate(
- inputs,
- sampling_params,
- lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
- if lora_id else None,
- )
- # Print the outputs.
- generated_texts: List[str] = []
- for output in outputs:
- generated_text = output.outputs[0].text.strip()
- generated_texts.append(generated_text)
- print(f"Generated text: {generated_text!r}")
- return generated_texts
+QWEN2VL_MODEL_PATH = "Qwen/Qwen2-VL-2B-Instruct"
+QWEN25VL_MODEL_PATH = "Qwen/Qwen2.5-VL-3B-Instruct"
@pytest.mark.xfail(
current_platform.is_rocm(),
reason="Qwen2-VL dependency xformers incompatible with ROCm")
def test_qwen2vl_lora(qwen2vl_lora_files):
- llm = vllm.LLM(
- MODEL_PATH,
- max_num_seqs=2,
- enable_lora=True,
- max_loras=2,
- max_lora_rank=16,
- trust_remote_code=True,
- mm_processor_kwargs={
- "min_pixels": 28 * 28,
- "max_pixels": 1280 * 28 * 28,
- },
- max_model_len=4096,
- )
- output1 = do_sample(llm, qwen2vl_lora_files, lora_id=1)
- for i in range(len(EXPECTED_OUTPUT)):
- assert EXPECTED_OUTPUT[i].startswith(output1[i])
-
- output2 = do_sample(llm, qwen2vl_lora_files, lora_id=2)
- for i in range(len(EXPECTED_OUTPUT)):
- assert EXPECTED_OUTPUT[i].startswith(output2[i])
+ """Test Qwen 2.0 VL model with LoRA"""
+ config = TestConfig(model_path=QWEN2VL_MODEL_PATH,
+ lora_path=qwen2vl_lora_files)
+ tester = Qwen2VLTester(config)
+
+ # Test with different LoRA IDs
+ for lora_id in [1, 2]:
+ tester.run_test(TEST_IMAGES,
+ expected_outputs=EXPECTED_OUTPUTS,
+ lora_id=lora_id)
+
+
+@pytest.mark.xfail(
+ current_platform.is_rocm(),
+ reason="Qwen2.5-VL dependency xformers incompatible with ROCm",
+)
+@pytest.mark.skipif(
+ Version(TRANSFORMERS_VERSION) < Version("4.49.0"),
+ reason="Qwen2.5-VL require transformers version no lower than 4.49.0",
+)
+def test_qwen25vl_lora(qwen25vl_lora_files):
+ """Test Qwen 2.5 VL model with LoRA"""
+ config = TestConfig(model_path=QWEN25VL_MODEL_PATH,
+ lora_path=qwen25vl_lora_files)
+ tester = Qwen2VLTester(config)
+
+ # Test with different LoRA IDs
+ for lora_id in [1, 2]:
+ tester.run_test(TEST_IMAGES,
+ expected_outputs=EXPECTED_OUTPUTS,
+ lora_id=lora_id)
diff --git a/vllm/model_executor/models/qwen2_5_vl.py b/vllm/model_executor/models/qwen2_5_vl.py
index 29187eb2ef9c1..f16fa536791ea 100644
--- a/vllm/model_executor/models/qwen2_5_vl.py
+++ b/vllm/model_executor/models/qwen2_5_vl.py
@@ -734,16 +734,17 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module, SupportsMultiModal,
"up_proj",
],
}
- # LoRA specific attributes, TODO: double check
+ # LoRA specific attributes
supported_lora_modules = [
+ # language model
"qkv_proj",
"o_proj",
"gate_up_proj",
- "down_proj",
- "gate_proj"
- "up_proj",
+ "down_proj", # Same name with vision encoder
# vision tower
"qkv",
+ "gate_proj",
+ "up_proj",
"attn.proj", # Distinguish patch_embed.proj
"fc1",
"fc2",
@@ -751,6 +752,7 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module, SupportsMultiModal,
"mlp.0",
"mlp.2"
]
+
embedding_modules = {}
embedding_padding_modules = []