-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2023_RamanSummary_2BWF.py
executable file
·145 lines (114 loc) · 4.43 KB
/
2023_RamanSummary_2BWF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import fnmatch
import pandas as pd
import numpy as np
tempData = []
for file in os.listdir('.'):
if fnmatch.fnmatch(file, '*_fitfile.txt'):
fullFilename = file
filename = file[:-12]
print(filename)
flen = len(filename)-9
data = np.genfromtxt(fullFilename, delimiter = '\t', usecols = (1,), skip_header = (2))
unc= np.genfromtxt(fullFilename, delimiter = '\t', usecols = (2,), skip_header = (2))
position = data[0]
location = data[1]
exc_laser = data[2]
num_pks = data[3]
fit_version = unc[3]
baseline_order = data[4]
baseline_r2 = data[5]
baseline_flatness = data[6]
pkfit_r2 = data[7]
pkfit_see = data[8]
q_BWF = data[9]
g_pos = data[10]
g_pos_unc = unc[10]
g_width = data[11]
g_width_unc = unc[11]
g_intensity = data[12]
g_ints_unc = unc[12]
d_pos = data[13]
d_pos_unc = unc[13]
d_width = data[14]
d_width_unc = unc[14]
d_intensity = data[15]
d_ints_unc = unc[15]
d2_pos = data[16]
d2_pos_unc = unc[16]
d2_width = data[17]
d2_width_unc = unc[17]
d2_intensity = data[18]
d2_ints_unc = unc[18]
d3_pos = data[19]
d3_pos_unc = unc[19]
d3_width = data[20]
d3_width_unc = unc[20]
d3_intensity = data[21]
d3_ints_unc = unc[21]
d4_pos = data[22]
d4_pos_unc = unc[22]
d4_width = data[23]
d4_width_unc = unc[23]
d4_intensity = data[24]
d4_ints_unc = unc[24]
Lalow_val = data[25]
Lalow_unc = unc[25]
ID_IG = data[27]
ID_IG_unc = unc[27]
scan_info = np.genfromtxt(fullFilename, dtype = str, delimiter = '\t', usecols = (1), skip_footer = (len(data)+1))
fitting_info = filename.split(sep='_')[-1]
#########################
# to solve concat/append unc. concat all the bits into individual lists, then after all loops run, concat into a df below
tempData.append({'Position': position,
'Location': location,
'Scan Info': scan_info,
'Exc Laser': exc_laser,
'Num Peaks Fit': num_pks,
'Fitting routine': fitting_info + 'v.' +str(fit_version),
'Baseline Order': baseline_order,
'Baseline Flatness': baseline_flatness,
'PkFit R2': pkfit_r2,
'PkFit SEE': pkfit_see,
'qBWF': q_BWF,
'G Peak Position': g_pos,
'G PeakPos Unc':g_pos_unc,
'G Peak Width':g_width,
'G PeakWid Unc':g_width_unc,
'G Intensity': g_intensity ,
'G Intensity unc': g_ints_unc,
'D Peak Position': d_pos,
'D PeakPos Unc': d_pos_unc,
'D Peak Width': d_width,
'D PeakWid Unc': d_width_unc,
'D Intensity': d_intensity,
'D Intensity unc': d_ints_unc,
'D2 Peak Position': d2_pos,
'D2 PeakPos Unc': d2_pos_unc,
'D2 Peak Width': d2_width,
'D2 PeakWid Unc': d2_width_unc,
'D2 Intensity': d2_intensity,
'D2 Intensity unc': d2_ints_unc,
'D3 Peak Position': d3_pos,
'D3 PeakPos Unc': d3_pos_unc,
'D3 Peak Width': d3_width,
'D3 PeakWid Unc': d3_width_unc,
'D3 Intensity': d3_intensity,
'D3 Intensity unc': d3_ints_unc,
'D4 Peak Position': d4_pos,
'D4 PeakPos Unc': d4_pos_unc,
'D4 Peak Width': d4_width,
'D4 PeakWid Unc': d4_width_unc,
'D4 Intensity': d4_intensity,
'D4 Intensity unc': d4_ints_unc,
'Conj Length (low)': Lalow_val ,
#'Conj Length unc': La_unc ,
'ID IG Ratio': ID_IG ,
'ID IG Ratio unc': ID_IG_unc ,
'Filename': filename ,
#'Noise': noise ,
#'SNR D band': SNRD ,
})
# this is where concat the individual lists into dataframes will go--outside the loop
Data = pd.DataFrame(tempData)
Data.to_csv((fitting_info + 'RamanFit_summary.csv'),index=False,header=True)