-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_awr.py
261 lines (207 loc) · 8.38 KB
/
run_awr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import random
from collections import deque
import gym
import numpy as np
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions.categorical import Categorical
from torch.multiprocessing import Process
from model import *
class RLEnv(Process):
def __init__(self, env_id, is_render):
super(RLEnv, self).__init__()
self.daemon = True
self.env = gym.make(env_id)
self.is_render = is_render
self.steps = 0
self.episode = 0
self.rall = 0
self.recent_rlist = deque(maxlen=100)
self.recent_rlist.append(0)
self.reset()
def step(self, action):
if self.is_render:
self.env.render()
obs, reward, done, info = self.env.step(action)
# try:
# obs, reward, done, info = self.env.step(action)
# except:
# input(action)
# obs, reward, done, info = self.env.step(action)
self.rall += reward
self.steps += 1
if done:
if self.steps < self.env.spec.max_episode_steps:
reward = -1
self.recent_rlist.append(self.rall)
print("[Episode {}] Reward: {} Recent Reward: {}".format(
self.episode, self.rall, np.mean(self.recent_rlist)))
obs = self.reset()
return obs, reward, done, info
def reset(self):
self.steps = 0
self.episode += 1
self.rall = 0
return np.array(self.env.reset())
class ActorAgent(object):
def __init__(
self,
input_size,
output_size,
gamma,
lam=0.95,
use_gae=True,
use_cuda=False,
use_noisy_net=False,
use_continuous=False):
self.model = BaseActorCriticNetwork(
input_size, output_size, use_noisy_net, use_continuous=use_continuous)
self.continuous_agent = use_continuous
self.output_size = output_size
self.input_size = input_size
self.gamma = gamma
self.lam = lam
self.use_gae = use_gae
self.actor_optimizer = optim.SGD(self.model.actor.parameters(),
lr=0.00005, momentum=0.9)
self.critic_optimizer = optim.SGD(self.model.critic.parameters(),
lr=0.0001, momentum=0.9)
self.device = torch.device('cuda' if use_cuda else 'cpu')
self.model = self.model.to(self.device)
def get_action(self, state):
# state = torch.Tensor(state).to(self.device).reshape(1,-1)
# state = state.float()
state = torch.tensor(state).float().reshape(1, -1)
policy, value = self.model(state)
if self.continuous_agent:
action = policy.sample().numpy().reshape(-1)
else:
policy = F.softmax(policy, dim=-1).data.cpu().numpy()
action = np.random.choice(np.arange(self.output_size), p=policy[0])
return action
def train_model(self, s_batch, action_batch, reward_batch, n_s_batch, done_batch):
s_batch = np.array(s_batch)
action_batch = np.array(action_batch)
reward_batch = np.array(reward_batch)
done_batch = np.array(done_batch)
data_len = len(s_batch)
mse = nn.MSELoss()
# update critic
self.critic_optimizer.zero_grad()
cur_value = self.model.critic(torch.FloatTensor(s_batch))
print('Before opt - Value has nan: {}'.format(torch.sum(torch.isnan(cur_value))))
discounted_reward, _ = discount_return(reward_batch, done_batch, cur_value.cpu().detach().numpy())
# discounted_reward = (discounted_reward - discounted_reward.mean())/(discounted_reward.std() + 1e-8)
for _ in range(critic_update_iter):
sample_idx = random.sample(range(data_len), 256)
sample_value = self.model.critic(torch.FloatTensor(s_batch[sample_idx]))
if (torch.sum(torch.isnan(sample_value)) > 0):
print('NaN in value prediction')
input()
critic_loss = mse(sample_value.squeeze(), torch.FloatTensor(discounted_reward[sample_idx]))
critic_loss.backward()
self.critic_optimizer.step()
self.critic_optimizer.zero_grad()
# update actor
cur_value = self.model.critic(torch.FloatTensor(s_batch))
print('After opt - Value has nan: {}'.format(torch.sum(torch.isnan(cur_value))))
discounted_reward, adv = discount_return(reward_batch, done_batch, cur_value.cpu().detach().numpy())
print('Advantage has nan: {}'.format(torch.sum(torch.isnan(torch.tensor(adv).float()))))
print('Returns has nan: {}'.format(torch.sum(torch.isnan(torch.tensor(discounted_reward).float()))))
# adv = (adv - adv.mean()) / (adv.std() + 1e-8)
self.actor_optimizer.zero_grad()
for _ in range(actor_update_iter):
sample_idx = random.sample(range(data_len), 256)
weight = torch.tensor(np.minimum(np.exp(adv[sample_idx] / beta), max_weight)).float().reshape(-1, 1)
cur_policy = self.model.actor(torch.FloatTensor(s_batch[sample_idx]))
if self.continuous_agent:
probs = -cur_policy.log_probs(torch.tensor(action_batch[sample_idx]).float())
actor_loss = probs * weight
else:
m = Categorical(F.softmax(cur_policy, dim=-1))
actor_loss = -m.log_prob(torch.LongTensor(action_batch[sample_idx])) * weight.reshape(-1)
actor_loss = actor_loss.mean()
# print(actor_loss)
actor_loss.backward()
self.actor_optimizer.step()
self.actor_optimizer.zero_grad()
print('Weight has nan {}'.format(torch.sum(torch.isnan(weight))))
def discount_return(reward, done, value):
value = value.squeeze()
num_step = len(value)
discounted_return = np.zeros([num_step])
gae = 0
for t in range(num_step - 1, -1, -1):
if done[t]:
delta = reward[t] - value[t]
else:
delta = reward[t] + gamma * value[t + 1] - value[t]
gae = delta + gamma * lam * (1 - done[t]) * gae
discounted_return[t] = gae + value[t]
# For Actor
adv = discounted_return - value
return discounted_return, adv
if __name__ == '__main__':
# env_id = 'CartPole-v1'
env_id = 'Pendulum-v0'
# env_id = 'LunarLanderContinuous-v2'
# env_id = 'Acrobot-v1'
# env_id = 'BipedalWalker-v2'
env = gym.make(env_id)
continuous = isinstance(env.action_space, gym.spaces.Box)
print('Env is continuous: {}'.format(continuous))
input_size = env.observation_space.shape[0] # 4
output_size = env.action_space.shape[0] if continuous else env.action_space.n # 2
env.close()
use_cuda = False
use_noisy_net = False
batch_size = 256
num_sample = 2048
critic_update_iter = 500
actor_update_iter = 1000
iteration = 100000
max_replay = 50000
gamma = 0.99
lam = 0.95
beta = 0.05
max_weight = 20.0
use_gae = True
agent = ActorAgent(
input_size,
output_size,
gamma,
use_gae=use_gae,
use_cuda=use_cuda,
use_noisy_net=use_noisy_net,
use_continuous=continuous)
is_render = False
env = RLEnv(env_id, is_render)
states, actions, rewards, next_states, dones = deque(maxlen=max_replay), deque(maxlen=max_replay), deque(
maxlen=max_replay), deque(maxlen=max_replay), deque(maxlen=max_replay)
last_done_index = -1
for i in range(iteration):
done = False
score = 0
step = 0
episode = 0
state = env.reset()
while True:
step += 1
action = agent.get_action(state)
if (torch.sum(torch.isnan(torch.tensor(action).float()))):
print(action)
action = np.zeros_like(action)
next_state, reward, done, info = env.step(action)
states.append(np.array(state))
actions.append(action)
rewards.append(reward)
next_states.append(np.array(next_state))
dones.append(done)
state = next_state[:]
if done:
episode += 1
state = env.reset()
if step > num_sample:
step = 0
# train
agent.train_model(states, actions, rewards, next_states, dones)