-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
316 lines (256 loc) · 14.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
import random
import numpy as np
import torch
import argparse
from argparse import Namespace
from time import time
import torch.optim as optim
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.utils.data import DataLoader, DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from data.vocab_tokenizer import SharedVocabTokenizer
from data.nmt import NmtDataSet, NmtBucketBatchDataSet, NmtBucketBatchCollator
from utils.saving_utils import load_most_recent_checkpoint, save_last_checkpoint
from loss.loss import LabelSmoothingLoss
from utils.args_utils import scheduler_type_choice
from test_withBPE import compute_mean_accuracy, count_parameters, \
eval_compute_score_on_set_withBPE
# ----------------------- Global settings ------------------------------------
torch.autograd.set_detect_anomaly(False)
torch.set_num_threads(1)
import functools
print = functools.partial(print, flush=True)
# --------------------------------------------------------------------
# prevents some issues related to torch low level implementation in some machines
# to be removed if they have no effect
torch.multiprocessing.set_sharing_strategy('file_system')
torch.multiprocessing.set_start_method('spawn', force=True)
def nmt_train(rank, world_size,
nmt_train_ds, nmt_val_ds, nmt_test_ds,
ddp_model, train_args, sched_args, save_args, other_args):
num_workers = 0
train_sampler = DistributedSampler(dataset=nmt_train_ds, seed=other_args.seed, drop_last=True,
rank=rank, num_replicas=world_size)
train_collator = NmtBucketBatchCollator(nmt_train_ds.get_src_vocab().get_pad_idx(), nmt_train_ds.get_trg_vocab().get_pad_idx())
# batch size e' a 1, perche' dataset e' gia organizzato lui in batches, quindi fetchare 1, da' gia un [dyn_batch, seq_len]
train_dl = DataLoader(nmt_train_ds, batch_size=1, num_workers=num_workers,
shuffle=False, collate_fn=train_collator, sampler=train_sampler)
optimizer = optim.Adam(filter(lambda p: p.requires_grad, ddp_model.parameters()), betas=(0.9, 0.98), eps=1e-9, lr=1.0)
loss_function = LabelSmoothingLoss(smoothing_coeff=0.1,
ignore_index=nmt_train_ds.get_trg_vocab().get_pad_idx(), rank=rank)
loss_function.to(rank)
if save_args.save_path is not None:
found_checkpoint, _ = load_most_recent_checkpoint(ddp_model.module, optimizer, None,
rank, save_args.save_path)
sched_it = 0
algorithm_start_time = time()
print("How many batches: " + str(len(train_dl)))
for epoch in range(train_args.num_epochs):
train_loss = 0
train_acc = 0
for batch, i in zip(iter(train_dl), range(len(train_dl))):
ddp_model.train()
# update iteration
if sched_args.sched_type == 'noam':
modified_sched_it = int(sched_it / train_args.num_accum)
new_lr = pow(ddp_model.module.d_model, -0.5) * min(pow((modified_sched_it + 1), -0.5),
(modified_sched_it + 1) * pow(sched_args.warmup_steps, -1.5))
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
batch_src, num_pads_src, batch_trg, num_pads_trg = batch
batch_input_x = batch_src.to(rank)
batch_trg_y = batch_trg.to(rank)
pred = ddp_model(enc_input=batch_input_x, dec_input=batch_trg_y[:, :-1],
enc_input_num_pads=num_pads_src, dec_input_num_pads=num_pads_trg,
apply_softmax=False)
loss = loss_function(pred, batch_trg_y[:, 1:])
loss.backward()
if (i+1) % train_args.num_accum == 0:
torch.nn.utils.clip_grad_norm_(ddp_model.parameters(), max_norm=1.0)
optimizer.step()
optimizer.zero_grad()
acc = compute_mean_accuracy(pred, batch_trg_y[:, 1:], num_pads_trg)
if acc < 0:
print("negative acc wtf...")
train_acc += acc / len(pred)
train_loss += loss.item()
sched_it += 1
del batch_src, num_pads_src, batch_trg, num_pads_trg
torch.cuda.empty_cache()
train_loss = train_loss / len(train_dl)
train_acc = train_acc / len(train_dl)
print("Epoch: " + str(epoch) + " Train loss: " + str(round(train_loss, 4)) + " acc: " + str(round(train_acc, 4)), end=" | ")
# evaluation
if rank == 0 and ((epoch+1) % 10 == 0) and epoch >= 200:
print("Evaluation on Test Set")
bleu_score = eval_compute_score_on_set_withBPE(ddp_model.module, nmt_test_ds,
beam_size=train_args.eval_beam_size,
trg_lang=train_args.trg_lang,
verbose=True)
print("Test Bleu: " + str(bleu_score), end=" | ")
print("lr: " + str(round(new_lr, 4)), end=" | ")
print("Elapsed: " + str(round((time() - algorithm_start_time) / 60, 4)) + " min")
save_last_checkpoint(ddp_model, optimizer, None,
save_args.save_path,
num_max_checkpoints=save_args.how_many_checkpoints)
def distributed_train(rank, world_size,
nmt_train_ds, nmt_val_ds, nmt_test_ds,
model_args, train_args, sched_args,
save_args, other_args):
print("GPU: " + str(rank) + "] Process " + str(rank) + " working...")
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = other_args.ddp_sync_port
dist.init_process_group("nccl", rank=rank, world_size=world_size)
print("Creating pretraining - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -")
if model_args.model_name == 'transformer':
from model.transformer import TransformerMT
model = TransformerMT(d_model=model_args.d_model, N=model_args.N, num_heads=1,
shared_word2idx=nmt_train_ds.get_src_word2idx_dict(), # indifferente se prendo src o trg
d_ff=256, max_seq_len=model_args.max_len,
dropout_perc=model_args.dropout,
rank=rank)
else:
print("Must choose a model")
exit(-1)
print(model.__class__)
model.to(rank)
ddp_model = DDP(model, device_ids=[rank])
print("The model has " + str(count_parameters(model)) + " trainable parameters")
print("Start NMT Training")
nmt_train(rank, world_size, nmt_train_ds, nmt_val_ds, nmt_test_ds,
ddp_model, train_args, sched_args, save_args, other_args)
dist.destroy_process_group()
def train(nmt_train_ds, nmt_val_ds, nmt_test_ds,
model_args, train_args, sched_args,
save_args, other_args):
world_size = torch.cuda.device_count()
print("Using - ", world_size, " processes / GPUs!")
assert (other_args.num_gpus <= world_size), "requested num gpus higher than the number of available gpus "
print("Requested num GPUs: " + str(other_args.num_gpus))
mp.spawn(distributed_train,
args=(world_size,
nmt_train_ds, nmt_val_ds, nmt_test_ds,
model_args, train_args, sched_args,
save_args, other_args
),
nprocs=other_args.num_gpus,
join=True)
if __name__ == "__main__":
print("Starting: " + str(__name__))
parser = argparse.ArgumentParser(description='Machine Translation')
parser.add_argument('--selected_model', type=str, default='transformer')
parser.add_argument('--N', type=int, default=3)
parser.add_argument('--d_model', type=int, default=512)
parser.add_argument('--dropout', type=float, default=0.1)
# scheduler arguments that are used or not according to the scheduler type
parser.add_argument('--sched_type', type=scheduler_type_choice, default='noam')
parser.add_argument('--warmup_steps', type=int, default=400)
parser.add_argument('--pretrain_eps', type=float, default=1e-4)
# train_hdf5_file=train_args.hdf5_path,
# hdf5_num_batches=train_args.num_hdf5,
parser.add_argument('--min_len', type=int, default=1)
parser.add_argument('--max_len', type=int, default=150)
parser.add_argument('--max_train_len', type=int, default=200)
from utils.args_utils import str2bool
parser.add_argument('--reverse_src_trg', type=str2bool, default=False)
parser.add_argument('--ALL_INDEXES', type=str2bool, default=False)
parser.add_argument('--print_every_iter', type=int, default=500)
parser.add_argument('--num_pretrain_iter', type=int, default=15000)
parser.add_argument('--num_epochs', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=96)
parser.add_argument('--eval_batch_size', type=int, default=96)
parser.add_argument('--pretrain_batch_size', type=int, default=96)
parser.add_argument('--num_accum', type=int, default=2)
parser.add_argument('--pretrain_num_accum', type=int, default=4)
parser.add_argument('--eval_beam_size', type=int, default=4)
parser.add_argument('--save_path', type=str, default='./github_ignore_material/saves/')
parser.add_argument('--parent_path', type=str, default='')
parser.add_argument('--how_many_checkpoints', type=int, default=1)
parser.add_argument('--max_seq_len', type=int, default=100)
parser.add_argument('--language', type=str, default='kk-en')
parser.add_argument('--eval_stats', type=str2bool, default=True)
parser.add_argument('--num_gpus', type=int, default=1)
parser.add_argument('--ddp_sync_port', type=int, default=12354)
parser.add_argument('--seed', type=int, default=1234)
args = parser.parse_args()
args.ddp_sync_port = str(args.ddp_sync_port)
seed = args.seed
print("seed: " + str(seed))
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.enabled = False
np.random.seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
if args.language == 'uz-en_4000':
data_args = Namespace(data_path='./bpe_data/qed_uz_en/',
src_lang='uz',
trg_lang='en',
src_train_filename='4000_train.uz',
trg_train_filename='4000_train.en',
src_val_filename='4000_val.uz',
trg_val_filename='4000_val.en',
src_test_filename='4000_test.uz',
trg_test_filename='4000_test.en')
else:
print("Please choose a language pair.")
raise ValueError
model_args = Namespace(model_name=args.selected_model,
N=args.N,
d_model=args.d_model,
max_len=args.max_len,
dropout=args.dropout)
train_args = Namespace(batch_size=args.batch_size,
pretrain_batch_size=args.pretrain_batch_size,
num_accum=args.num_accum,
pretrain_num_accum=args.num_accum,
num_epochs=args.num_epochs,
num_pretrain_iter=args.num_pretrain_iter,
print_every_iter=args.print_every_iter,
eval_batch_size=args.eval_batch_size,
eval_beam_size=args.eval_beam_size,
src_lang=data_args.src_lang,
trg_lang=data_args.trg_lang,
pretrain_eps=args.pretrain_eps,
eval_stats=args.eval_stats)
sched_args = Namespace(sched_type=args.sched_type,
warmup_steps=args.warmup_steps)
save_args = Namespace(save_path=args.save_path,
how_many_checkpoints=args.how_many_checkpoints)
other_args = Namespace(ddp_sync_port=args.ddp_sync_port,
num_gpus=args.num_gpus,
seed=args.seed)
shared_vocab = SharedVocabTokenizer(sentences_path_src=data_args.data_path + data_args.src_train_filename,
sentences_path_trg=data_args.data_path + data_args.trg_train_filename,
verbose=True)
src_vocab = shared_vocab # trick per usarne uno solo...
trg_vocab = shared_vocab
if args.reverse_src_trg:
print("Swapping SRC and TRG languages")
tmp = data_args.trg_train_filename
data_args.trg_train_filename = data_args.src_train_filename
data_args.src_train_filename = tmp
tmp = data_args.trg_val_filename
data_args.trg_val_filename = data_args.src_val_filename
data_args.src_val_filename = tmp
tmp = data_args.trg_test_filename
data_args.trg_test_filename = data_args.src_test_filename
data_args.src_test_filename = tmp
nmt_val_ds = NmtDataSet(src_sentences_path=data_args.data_path + data_args.src_val_filename,
trg_sentences_path=data_args.data_path + data_args.trg_val_filename,
min_length=args.min_len, max_length=args.max_len,
src_vocab=src_vocab, trg_vocab=trg_vocab, verbose=True)
nmt_test_ds = NmtDataSet(src_sentences_path=data_args.data_path + data_args.src_test_filename,
trg_sentences_path=data_args.data_path + data_args.trg_test_filename,
min_length=args.min_len, max_length=args.max_len,
tokenize_trg=False,
src_vocab=src_vocab, trg_vocab=trg_vocab, verbose=True)
nmt_train_ds = NmtBucketBatchDataSet(src_sentences_path=data_args.data_path + data_args.src_train_filename,
trg_sentences_path=data_args.data_path + data_args.trg_train_filename,
min_length=args.min_len, max_length=args.max_train_len,
bucket_size=train_args.batch_size,
src_vocab=src_vocab, trg_vocab=trg_vocab, verbose=True)
train(nmt_train_ds, nmt_val_ds, nmt_test_ds,
model_args, train_args, sched_args, save_args, other_args)