-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
125 lines (103 loc) · 5.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import database
import transcribe_speech
import generate_response
import generate_audio
import asyncio
from config import NAME
from pydub import AudioSegment
from pydub.playback import play
from io import BytesIO
import argparse
def output(text: str, audio_file: BytesIO) -> None:
"""
Prints the text and plays back the audio file.
Parameters:
text (str): The text to be printed.
language (str): The language of the text (e.g. 'en' for English).
audio_file (BytesIO): The audio file to be played.
"""
# print the text
print("\nLINGO: " + text + "\n\n----------------------------------------\n")
# load the audio from the BytesIO object using pydub
audio_segment = AudioSegment.from_file(audio_file, format='mp3')
# play the audio
play(audio_segment)
def process_voice_question(whisper_model: str, language: str, gender: str, language_level: str) -> None:
"""
Handles the user's button click event by capturing the spoken input,
transcribing it, generating a response, converting the response to speech,
and displaying the text response while playing the audio output.
Args:
whisper_model (str): The whisper model to be used.
language (str): The intended language of the conversation.
gender (str): The desired gender of the generated voice.
language_level (str): The target grade level (K3, 1, 5, 10, etc)
"""
# Capture user's spoken input and transcribe it
transcript = transcribe_speech.main(whisper_model, language)
if transcript is not None:
transcript = transcript.strip()
else:
print("Error: Transcript is empty.")
return
print("ME: " + transcript + "\n")
# Generate a response using NLP
response_text = generate_response.converse(transcript, language_level)
# Convert the response text to speech
audio_file = asyncio.run(get_audio_file(response_text, language, gender))
# Display the text response and play the audio
output(response_text, audio_file)
async def get_audio_file(text, language, gender):
return await generate_audio.generate_audio(text, language, gender)
def process_text_question(text: str, language: str, gender: str, language_level: str) -> None:
"""
Handles the user's typed input, generating a response, converting the response to speech,
and displaying the text response while playing the audio output.
Args:
text (str): The input text from the user.
language (str): The intended language of the conversation.
gender (str): The desired gender of the generated voice.
language_level (str): The target grade level (K3, 1, 5, 10, etc)
"""
# Generate a response using NLP
response_text = generate_response.converse(text, language_level)
# Convert the response text to speech
audio_file = asyncio.run(get_audio_file(response_text, language, gender))
# Display the text response and play the audio
output(response_text, audio_file)
def main(whisper_model: str, language: str, gender: str, language_level: str) -> None:
"""
The main loop of the application that waits for the user's button press
(Enter key) and starts the recording process.
Args:
whisper_model (str): The whisper model to use for transcription.
language (str): The intended language of the conversation.
language_level (str): The target grade level (K3, 1, 5, 10, etc)
"""
database.initialize_memory()
global NAME
NAME = input("Please enter your name: ")
while True:
# Wait for the user to press a button (Enter key in this case)
user_input = input("Press Enter to speak, or type your question... (type 'goodbye' to quit)")
if user_input.lower() == "":
# Start the recording process
process_voice_question(whisper_model, language, gender, language_level)
elif user_input.lower() == "goodbye":
# Call a different function to handle the "exit" command
generate_response.exit_program()
break # exit the loop and terminate the program
else:
process_text_question(user_input, language, gender, language_level)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process command line arguments for whisper_model and language.')
parser.add_argument('whisper_model', type=str, help='Whisper model to be used.', choices=["tiny", "tiny.en", "base", "base.en", "small", "small.en"])
parser.add_argument('language', type=str, help='The language code of the conversation. (e.g. en for English, es for spanish)', nargs='?', default='en')
parser.add_argument('gender', type=str, help='The desired gender of the voice. (M or F)', nargs='?', default='M', choices=["M", "F"])
parser.add_argument('grade_level', type=str, help='The target grade level (K3, 1, 5, 10, etc)', nargs='?', default='3', choices=["K3", "K4", "K5", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"])
args = parser.parse_args()
whisper_model = args.whisper_model
language = args.language
gender = args.gender
language_level = args.grade_level
main(whisper_model, language, gender, language_level)