-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLWF.py
60 lines (47 loc) · 1.72 KB
/
LWF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import keras
import tensorflow as tf
# Train Loop
model = build_model() # any tf model
loss = loss_fn() # loss function
tasks = [] # array of datasets [(t1_train, t1_val),(t2_train, t2_val)...]
optimizer = keras.optimizers.Adam()
prev_w = None
first = True
for ds_train, ds_val in tasks:
if first:
model.fit(
ds_train,
steps_per_epoch=len(ds_train),
epochs=10,
validation_data=ds_val,
validation_steps=len(ds_val)
)
first = False
prev_w = model.get_weights()
continue
for e in range(10):
for x, y in ds_train:
y = tf.Variable(y, dtype='float32')
# save current model
curr_w = model.get_weights()
# load old model
model.set_weights(prev_w)
model.compile(loss=loss, optimizer=optimizer)
# predict new data with old model
old_preds = model(x, training=False)
# load new model back
model.set_weights(curr_w)
model.compile(loss=loss, optimizer=optimizer)
with tf.GradientTape(persistent=True) as tape:
preds = model(x, training=True)
# convergence loss
reg1 = loss(y, preds)
# retention loss
reg2 = loss(old_preds, preds)
# generalization loss
#reg3 = loss(y*old_preds, y*old_preds*preds)
loss_value = reg1+reg2#+reg3
grads = tape.gradient(loss_value, model.trainable_weights)
quickopt.apply_gradients(zip(grads, model.trainable_variables))
del curr_w
prev_w = model.get_weights()