-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBigram.py
115 lines (95 loc) · 3.31 KB
/
Bigram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import torch
import torch.nn as nn
from torch.nn import functional as F
# https://github.com/Infatoshi/fcc-intro-to-llms
class Bigram(nn.Module):
def __init__(self, vocab_size):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, vocab_size)
# T: timestep is how much of the index does the embedding saw
# [['h','e','l',0.,0.]
# ['h','e','l','l',0.]
# ['h','e','l','l','o']]
def forward(self, index, targets=None):
logits = self.token_embedding_table(index)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, index, max_new_tokens):
for _ in range(max_new_tokens):
logits, loss = self.forward(index)
# focus only on the last timestep
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
index_next = torch.multinomial(probs, num_samples=1)
# append to sequence
index = torch.cat((index, index_next), dim=1)
return index
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)
# read file
with open('wizard_of_oz.txt', 'r', encoding='utf-8') as f:
text = f.read()
chars = sorted(set(text))
vocab_size = len(chars)
# encode data
string_to_int = { ch:i for i,ch in enumerate(chars) }
int_to_string = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [string_to_int[c] for c in s]
decode = lambda l: ''.join([int_to_string[i] for i in l])
data = torch.tensor(encode(text), dtype=torch.long)
# split batches
block_size = 8 # block of chars
batch_size = 4 # batch of blocks
n = int(0.8*len(data))
train_data = data[:n]
val_data = data[n:]
def get_batch(split):
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
model = Bigram(vocab_size)
m = model.to(device)
# Evaluation function
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
# Training loop
max_iters = 1000
learning_rate = 3e-4
eval_iters = 250
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for it in range(max_iters):
if it % eval_iters == 0:
losses = estimate_loss()
print(f"step: {it}, train loss: {losses['train']:.3f}, val loss: {losses['val']:.3f}")
# sample a batch of data
xb, yb = get_batch('train')
# evaluate the loss
logits, loss = model.forward(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
print(loss.item())
# Prediction
context = torch.zeros((1,1), dtype=torch.long, device=device)
generated_chars = decode(m.generate(context, max_new_tokens=500)[0].tolist())
print(generated_chars)