-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHopf_Section.m
151 lines (119 loc) · 3.97 KB
/
Hopf_Section.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
% ------------------------------------------------------------------
% SINDy method for discovering mappings in Poincaré sections
% ------------------------------------------------------------------
% Application to the Hopf normal form
%
% x' = x - omega*y - x*(x^2 + y^2)
% y' = omega*x + y - y*(x^2 + y^2)
%
% Here omega > 0 is a real-valued parameter.
%
% This code is associated with the paper
% "Poincaré maps for multiscale physics discovery and nonlinear Floquet
% theory" by Jason J. Bramburger and J. Nathan Kutz (Physica D, 2020).
% This script is used to obtain the results in Section 3.2.
% ------------------------------------------------------------------
% Clean workspace
clear all
close all
clc
format long
%Model parameters
T = 10*pi; % Period
%Generate Trajectories Hopf normal form
m = 2; %Dimension of ODE
n = m-1; %Dimension of Poincaré section
dt = 0.005;
tspan = (0:10000-1)*dt;
options = odeset('RelTol',1e-12,'AbsTol',1e-12*ones(1,m));
%Generate Trajectories
x0(1,:)=[0.0001; 0]; % Initial condition (Guarantee one starts near origin)
x0(2,:) = [0; 0]; %Trajectory at the ubstable equilibrium
[~,xdat(1,:,:)]=ode45(@(t,x) Hopf(x,T),tspan,x0(1,:),options);
[~,xdat(2,:,:)]=ode45(@(t,x) Hopf(x,T),tspan,x0(2,:),options);
kfinal = 5; % Number of trajectories
if kfinal >= 3
for k = 3:kfinal
x0(k,:) = [20*rand; 0]; %Initial conditions start in section
[~,xdat(k,:,:)]=ode45(@(t,x) Hopf(x,T),tspan,x0(k,:),options);
end
end
%% Poincaré section data
%Counting parameter
count = 1;
%Initialize
Psec(1) = xdat(1,1,1);
count = count + 1;
%Create Poincare section data
for i = 1:kfinal
for j = 1:length(xdat(1,:,1))-1
if (xdat(i,j,2) < 0) && (xdat(i,j+1,2) >= 0)
Psec(count) = xdat(i,j+1,1); %nth iterate
PsecNext(count - 1) = xdat(i,j+1,1); %(n+1)st iterate
count = count + 1;
end
end
Psec = Psec(1:length(Psec)-1);
count = count - 1;
end
%% SINDy for Poincaré Sections
% Access SINDy directory
addpath Util
% Create the recurrence data
xt = Psec';
xtnext = PsecNext';
% pool Data (i.e., build library of nonlinear time series)
polyorder = 5; %polynomial order
usesine = 0; %use sine on (1) or off (0)
Theta = poolData(xt,n,polyorder,usesine);
% compute Sparse regression: sequential least squares
lambda = 0.01; % lambda is our sparsification knob.
% apply iterative least squares/sparse regression
Xi = sparsifyDynamicsAlt(Theta,xtnext,lambda,n);
if n == 4
[yout, newout] = poolDataLIST({'x','y','z','w'},Xi,n,polyorder,usesine);
elseif n == 3
[yout, newout] = poolDataLIST({'x','y','z'},Xi,n,polyorder,usesine);
elseif n == 2
[yout, newout] = poolDataLIST({'x','y'},Xi,n,polyorder,usesine);
elseif n == 1
[yout, newout] = poolDataLIST({'x'},Xi,n,polyorder,usesine);
end
fprintf('SINDy model: \n ')
for k = 2:size(newout,2)
SINDy_eq = newout{1,k};
SINDy_eq = [SINDy_eq ' = '];
new = 1;
for j = 2:size(newout, 1)
if newout{j,k} ~= 0
if new == 1
SINDy_eq = [SINDy_eq num2str(newout{j,k}) newout{j,1} ];
new = 0;
else
SINDy_eq = [SINDy_eq ' + ' num2str(newout{j,k}) newout{j,1} ' '];
end
end
end
fprintf(SINDy_eq)
fprintf('\n ')
end
%% Simulate SINDy Map
a = zeros(length(Psec),1); %SINDy map solution
a(1) = 2*rand;
for k = 1:length(Psec)-1
for j = 1:length(Xi)
a(k+1) = a(k+1) + Xi(j)*a(k).^(j-1);
end
end
%% Plot Results
% Figure 1: Simulations of the discovered Poincaré map
figure(1)
plot(1:100,a(1:100),'b.','MarkerSize',10)
set(gca,'FontSize',16)
xlabel('$n$','Interpreter','latex','FontSize',20,'FontWeight','Bold')
ylabel('$x_n$','Interpreter','latex','FontSize',20,'FontWeight','Bold')
title('Iterates of the Discovered Poincaré Mapping','Interpreter','latex','FontSize',20,'FontWeight','Bold')
%% Hopf Right-hand-side
function dx = Hopf(x,T)
dx = [x(1) - T*x(2) - x(1)*(x(1)^2 + x(2)^2); T*x(1) + x(2) - x(2)*(x(1)^2 + x(2)^2)];
end