-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_controlnet.py
455 lines (365 loc) · 21.1 KB
/
train_controlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import os
import argparse
import numpy as np
from tqdm import tqdm
import os.path as osp
import itertools
import torch
import torch.nn as nn
import torch.nn.functional as F
from core.data import *
from transformers import CLIPTextModel, AutoTokenizer
from diffusers import AutoencoderKL, DDPMScheduler
from diffusers.optimization import get_scheduler
from core.models.unet_model import build_unet
from core.models.controllora import ControlLoRAModel
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')
os.environ["TOKENIZERS_PARALLELISM"] = "false"
parser = argparse.ArgumentParser(description='train')
parser.add_argument('--data_path', default="/mnt/home_6T/public/samchu0218/Datasets/mvtec3d_preprocessing/", type=str)
parser.add_argument('--ckpt_path', default="./checkpoints/controlnet_model/mvtec3d_InfoNCE/") #
parser.add_argument('--load_vae_ckpt', default=None)
parser.add_argument('--load_unet_ckpt', default="/home/samchu0218/Multi_Lightings/checkpoints/unet_model/MVTec3D/epoch10_unet.pth")
parser.add_argument('--image_size', default=256, type=int)
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--dataset_type', default="eyecandies", help="eyecandies, mvtec3d")
parser.add_argument('--use_floss', default=True, type=bool)
# parser.add_argument('--')
# Model Setup
parser.add_argument("--diffusion_id", type=str, default="CompVis/stable-diffusion-v1-4")
parser.add_argument("--revision", type=str, default="ebb811dd71cdc38a204ecbdd6ac5d580f529fd8c")
parser.add_argument("--controllora_linear_rank",type=int, default=4)
parser.add_argument("--controllora_conv2d_rank",type=int,default=0)
# Training Setup
parser.add_argument("--learning_rate", default=5e-6)
parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)')
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--workers", default=4)
parser.add_argument('--CUDA', type=int, default=0, help="choose the device of CUDA")
parser.add_argument("--lr_scheduler", type=str, default="constant", help=('The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'' "constant", "constant_with_warmup"]'),)
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument('--epoch', default=0, type=int, help="Which epoch to start training at")
parser.add_argument("--num_train_epochs", type=int, default=50)
parser.add_argument("--lr_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--save_epoch", type=int, default=3)
def export_loss(save_path, loss_list):
epoch_list = range(len(loss_list))
plt.rcParams.update({'font.size': 30})
plt.title('Training Loss Curve') # set the title of graph
plt.figure(figsize=(20, 15))
plt.plot(epoch_list, loss_list, color='b')
plt.xticks(np.arange(0, len(epoch_list)+1, 50))
plt.xlabel('Epoch') # set the title of x axis
plt.ylabel('Loss')
plt.savefig(save_path)
plt.clf()
plt.cla()
plt.close("all")
def compute_mean_feature_loss(model_output):
# Extract Unet Feature Map
unet_f_layer0 = model_output['up_ft'][0]
B, C, H, W = unet_f_layer0.shape
RGB_unet_f_layer0 = unet_f_layer0[:args.batch_size * 6]
Nmap_unet_f_layer0 = unet_f_layer0[args.batch_size * 6:]
mean_RGBunet_f_layer0 = torch.mean(RGB_unet_f_layer0.view(-1, 6, C, H, W), dim=1)
mean_RGBunet_f_layer0 = mean_RGBunet_f_layer0.repeat_interleave(6, dim=0)
mean_Nmapunet_f_layer0 = torch.mean(Nmap_unet_f_layer0.view(-1, 6, C, H, W), dim=1)
mean_Nmapunet_f_layer0 = mean_Nmapunet_f_layer0.repeat_interleave(6, dim=0)
unet_f_layer1 = model_output['up_ft'][1]
B, C, H, W = unet_f_layer1.shape
RGB_unet_f_layer1 = unet_f_layer1[:args.batch_size * 6]
Nmap_unet_f_layer1 = unet_f_layer1[args.batch_size * 6:]
mean_RGBunet_f_layer1 = torch.mean(RGB_unet_f_layer1.view(-1, 6, C, H, W), dim=1)
mean_RGBunet_f_layer1 = mean_RGBunet_f_layer1.repeat_interleave(6, dim=0)
mean_Nmapunet_f_layer1 = torch.mean(Nmap_unet_f_layer1.view(-1, 6, C, H, W), dim=1)
mean_Nmapunet_f_layer1 = mean_Nmapunet_f_layer1.repeat_interleave(6, dim=0)
unet_f_layer2 = model_output['up_ft'][2]
B, C, H, W = unet_f_layer2.shape
RGB_unet_f_layer2 = unet_f_layer2[:args.batch_size * 6]
Nmap_unet_f_layer2 = unet_f_layer2[args.batch_size * 6:]
mean_RGBunet_f_layer2 = torch.mean(RGB_unet_f_layer2.view(-1, 6, C, H, W), dim=1)
mean_RGBunet_f_layer2 = mean_RGBunet_f_layer2.repeat_interleave(6, dim=0)
mean_Nmapunet_f_layer2 = torch.mean(Nmap_unet_f_layer2.view(-1, 6, C, H, W), dim=1)
mean_Nmapunet_f_layer2 = mean_Nmapunet_f_layer2.repeat_interleave(6, dim=0)
unet_f_layer3 = model_output['up_ft'][3]
B, C, H, W = unet_f_layer3.shape
RGB_unet_f_layer3 = unet_f_layer3[:args.batch_size * 6]
Nmap_unet_f_layer3 = unet_f_layer3[args.batch_size * 6:]
mean_RGBunet_f_layer3 = torch.mean(RGB_unet_f_layer3.view(-1, 6, C, H, W), dim=1)
mean_RGBunet_f_layer3 = mean_RGBunet_f_layer3.repeat_interleave(6, dim=0)
mean_Nmapunet_f_layer3 = torch.mean(Nmap_unet_f_layer3.view(-1, 6, C, H, W), dim=1)
mean_Nmapunet_f_layer3 = mean_Nmapunet_f_layer3.repeat_interleave(6, dim=0)
# Compute loss and optimize model parameter
RGBfeature_loss = F.l1_loss(mean_RGBunet_f_layer0, RGB_unet_f_layer0, reduction="mean")
RGBfeature_loss += F.l1_loss(mean_RGBunet_f_layer1, RGB_unet_f_layer1, reduction="mean")
RGBfeature_loss += F.l1_loss(mean_RGBunet_f_layer2, RGB_unet_f_layer2, reduction="mean")
RGBfeature_loss += F.l1_loss(mean_RGBunet_f_layer3, RGB_unet_f_layer3, reduction="mean")
Nmapfeature_loss = F.l1_loss(mean_Nmapunet_f_layer0, Nmap_unet_f_layer0, reduction="mean")
Nmapfeature_loss += F.l1_loss(mean_Nmapunet_f_layer1, Nmap_unet_f_layer1, reduction="mean")
Nmapfeature_loss += F.l1_loss(mean_Nmapunet_f_layer2, Nmap_unet_f_layer2, reduction="mean")
Nmapfeature_loss += F.l1_loss(mean_Nmapunet_f_layer3, Nmap_unet_f_layer3, reduction="mean")
feature_loss = RGBfeature_loss + Nmapfeature_loss
return feature_loss
def compute_diff_modality_loss(model_output):
unet_f_layer0 = model_output['up_ft'][0]
RGB_unet_f_layer0 = unet_f_layer0[:args.batch_size]
Nmap_unet_f_layer0 = unet_f_layer0[args.batch_size:]
unet_f_layer1 = model_output['up_ft'][1]
RGB_unet_f_layer1 = unet_f_layer1[:args.batch_size]
Nmap_unet_f_layer1 = unet_f_layer1[args.batch_size:]
unet_f_layer2 = model_output['up_ft'][2]
RGB_unet_f_layer2 = unet_f_layer2[:args.batch_size]
Nmap_unet_f_layer2 = unet_f_layer2[args.batch_size:]
unet_f_layer3 = model_output['up_ft'][3]
RGB_unet_f_layer3 = unet_f_layer3[:args.batch_size]
Nmap_unet_f_layer3 = unet_f_layer3[args.batch_size:]
# Compute loss and optimize model parameter
feature_loss = F.l1_loss(RGB_unet_f_layer0, Nmap_unet_f_layer0, reduction="mean")
feature_loss += F.l1_loss(RGB_unet_f_layer1, Nmap_unet_f_layer1, reduction="mean")
feature_loss += F.l1_loss(RGB_unet_f_layer2, Nmap_unet_f_layer2, reduction="mean")
feature_loss += F.l1_loss(RGB_unet_f_layer3, Nmap_unet_f_layer3, reduction="mean")
return feature_loss
def transpose(x):
return x.transpose(-2, -1)
def normalize(*xs):
return [None if x is None else F.normalize(x, dim=-1) for x in xs]
class TrainUnet():
def __init__(self, args, device):
self.device = device
self.bs = args.batch_size
self.image_size = args.image_size
self.num_train_epochs = args.num_train_epochs
self.save_epoch = args.save_epoch
self.train_log_file = open(osp.join(args.ckpt_path, "training_log.txt"), "a", 1)
self.val_log_file = open(osp.join(args.ckpt_path, "val_log.txt"), "a", 1)
self.use_floss = args.use_floss
self.dataset_type = args.dataset_type
# Load training and validation data
if args.dataset_type == "eyecandies":
self.train_dataloader = train_lightings_loader(args)
self.val_dataloader = val_lightings_loader(args)
elif args.dataset_type == "mvtec3d":
self.train_dataloader = mvtec3D_train_loader(args)
self.val_dataloader = mvtec3D_val_loader(args)
# Create Model
self.tokenizer = AutoTokenizer.from_pretrained(args.diffusion_id, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(args.diffusion_id, subfolder="text_encoder")
self.noise_scheduler = DDPMScheduler.from_pretrained(args.diffusion_id, subfolder="scheduler")
self.vae = AutoencoderKL.from_pretrained(
args.diffusion_id,
subfolder="vae",
revision=args.revision,
).to(self.device)
self.unet = build_unet(args)
if os.path.isfile(args.load_unet_ckpt):
self.unet.load_state_dict(torch.load(args.load_unet_ckpt, map_location=self.device))
print("Load Diffusion Unet Checkpoint!")
self.controllora = ControlLoRAModel.from_unet(self.unet, lora_linear_rank=args.controllora_linear_rank, lora_conv2d_rank=args.controllora_conv2d_rank)
self.vae.requires_grad_(False)
self.unet.requires_grad_(False)
self.text_encoder.requires_grad_(False)
self.controllora.train()
self.vae.to(self.device)
self.unet.to(self.device)
self.text_encoder.to(self.device)
self.controllora.to(self.device)
# Optimizer creation
self.optimizer = torch.optim.AdamW(
self.controllora.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
self.lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=self.optimizer,
num_warmup_steps=0,
num_training_steps=len(self.train_dataloader) * args.num_train_epochs,
num_cycles=1,
power=1.0,
)
def image2latents(self, x):
x = x * 2.0 - 1.0
latents = self.vae.encode(x).latent_dist.sample()
latents = latents * 0.18215
return latents
def forward_process(self, x_0):
noise = torch.randn_like(x_0) # Sample noise that we'll add to the latents
bsz = x_0.shape[0]
timestep = torch.randint(1, self.noise_scheduler.config.num_train_timesteps, (bsz,), device=self.device) # Sample a random timestep for each image
timestep = timestep.long()
x_t = self.noise_scheduler.add_noise(x_0, noise, timestep) # Corrupt image
return noise, timestep, x_t
def get_text_embedding(self, text_prompt):
with torch.no_grad():
tok = self.tokenizer(text_prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_embedding = self.text_encoder(tok.input_ids.to(self.device))[0]
return text_embedding
def log_validation(self):
val_loss = 0.0
val_noise_loss = 0.0
val_feature_loss = 0.0
for lightings, nmaps, text_prompt in tqdm(self.val_dataloader, desc="Validation"):
with torch.no_grad():
self.optimizer.zero_grad()
lightings = lightings.to(self.device) # [bs, 6, 3, 256, 256]
nmaps = nmaps.to(self.device) # [bs, 6, 3, 256, 256]
# Get text embedding from CLIP
text_emb = self.get_text_embedding(text_prompt) # [bs , 7, 768]
lightings = lightings.view(-1, 3, self.image_size, self.image_size) # [bs * 6, 3, 256, 256]
# Convert images to latent space
rgb_latents = self.image2latents(lightings) # [bs * 6, 4, 32, 32]
nmap_latents = self.image2latents(nmaps) # [bs * 6, 4, 32, 32]
if self.dataset_type == "eyecandies":
repeat_nmaps = nmaps.repeat_interleave(6, dim=0) # [bs * 6, 3, 256, 256]
text_embs = text_emb.repeat_interleave(6, dim=0) # [bs * 6, 7, 768]
nmap_latents = nmap_latents.repeat_interleave(6, dim=0)
else:
repeat_nmaps = nmaps
text_embs = text_emb
nmap_latents = nmap_latents
encoder_hidden_states = torch.cat((text_embs, text_embs), dim=0) # [bs * 12, 77, 768]
input_latent = torch.cat((rgb_latents, nmap_latents), dim=0) # [bs * 12, 4, 32, 32]
# Add noise to the latents according to the noise magnitude at each timestep
noise, timesteps, noisy_latents = self.forward_process(input_latent)
# Training ControlNet
condition_image = torch.cat((repeat_nmaps, lightings), dim=0) # [bs * 7, 3, 256, 256]
down_block_res_samples, mid_block_res_sample = self.controllora(
noisy_latents,
timesteps,
encoder_hidden_states=encoder_hidden_states,
controlnet_cond=condition_image,
return_dict=False,
)
# Predict the noise from Unet
model_output = self.unet(
noisy_latents,
timesteps,
encoder_hidden_states=encoder_hidden_states,
down_block_additional_residuals=[sample for sample in down_block_res_samples],
mid_block_additional_residual=mid_block_res_sample
)
pred_noise = model_output['sample']
noise_loss = F.mse_loss(pred_noise.float(), noise.float(), reduction="mean")
if self.dataset_type == "eyecandies" and self.use_floss:
feature_loss = compute_mean_feature_loss(model_output)
loss = noise_loss + 0.01 * feature_loss
val_noise_loss += noise_loss.item()
val_feature_loss += feature_loss.item()
else:
loss = noise_loss
val_loss += loss.item()
val_loss /= len(self.val_dataloader)
val_noise_loss /= len(self.val_dataloader)
val_feature_loss /= len(self.val_dataloader)
print('Validation Loss: {:.6f}, Noise loss: {:.6f}, Feature loss:{:.6f}'.format(val_loss, val_noise_loss, val_feature_loss))
self.val_log_file.write('Validation Loss: {:.6f}, Noise loss: {:.6f}, Feature loss:{:.6f}\n'.format(val_loss, val_noise_loss, val_feature_loss))
return val_loss
#####################################################################
# Start Training #
#####################################################################
def train(self):
loss_list = []
noise_loss_list = []
feature_loss_list = []
val_loss_list = []
val_best_loss = float('inf')
for epoch in range(self.num_train_epochs):
epoch_loss = 0.0
epoch_noise_loss = 0.0
epoch_feature_loss = 0.0
for lightings, nmaps, text_prompt in tqdm(self.train_dataloader, desc="Training"):
self.optimizer.zero_grad()
lightings = lightings.to(self.device) # [bs, 6, 3, 256, 256]
nmaps = nmaps.to(self.device) # [bs, 6, 3, 256, 256]
# Get text embedding from CLIP
text_emb = self.get_text_embedding(text_prompt) # [bs , 7, 768]
lightings = lightings.view(-1, 3, self.image_size, self.image_size) # [bs * 6, 3, 256, 256]
# Convert images to latent space
rgb_latents = self.image2latents(lightings) # [bs * 6, 4, 32, 32]
nmap_latents = self.image2latents(nmaps) # [bs * 6, 4, 32, 32]
if self.dataset_type == "eyecandies":
repeat_nmaps = nmaps.repeat_interleave(6, dim=0) # [bs * 6, 3, 256, 256]
text_embs = text_emb.repeat_interleave(6, dim=0) # [bs * 6, 7, 768]
nmap_latents = nmap_latents.repeat_interleave(6, dim=0)
else:
repeat_nmaps = nmaps
text_embs = text_emb
nmap_latents = nmap_latents
encoder_hidden_states = torch.cat((text_embs, text_embs), dim=0) # [bs * 12, 77, 768]
input_latent = torch.cat((rgb_latents, nmap_latents), dim=0) # [bs * 12, 4, 32, 32]
# Add noise to the latents according to the noise magnitude at each timestep
noise, timesteps, noisy_latents = self.forward_process(input_latent)
# Training ControlNet
condition_image = torch.cat((repeat_nmaps, lightings), dim=0) # [bs * 7, 3, 256, 256]
down_block_res_samples, mid_block_res_sample = self.controllora(
noisy_latents,
timesteps,
encoder_hidden_states=encoder_hidden_states,
controlnet_cond=condition_image,
return_dict=False,
)
# Predict the noise from Unet
model_output = self.unet(
noisy_latents,
timesteps,
encoder_hidden_states=encoder_hidden_states,
down_block_additional_residuals=[sample for sample in down_block_res_samples],
mid_block_additional_residual=mid_block_res_sample
)
pred_noise = model_output['sample']
noise_loss = F.mse_loss(pred_noise.float(), noise.float(), reduction="mean")
if self.dataset_type == "eyecandies" and self.use_floss:
feature_loss = compute_mean_feature_loss(model_output)
loss = noise_loss + 0.01 * feature_loss
epoch_noise_loss += noise_loss.item()
epoch_feature_loss += feature_loss.item()
else:
loss = noise_loss
loss.backward()
epoch_loss += loss.item()
nn.utils.clip_grad_norm_(self.controllora.parameters(), args.max_grad_norm)
self.optimizer.step()
self.lr_scheduler.step()
epoch_loss /= len(self.train_dataloader)
epoch_noise_loss /= len(self.train_dataloader)
epoch_feature_loss /= len(self.train_dataloader)
loss_list.append(epoch_loss)
noise_loss_list.append(epoch_noise_loss)
feature_loss_list.append(epoch_feature_loss)
print('Training-Epoch {} Loss: {:.6f}, Noise loss: {:.6f}, Feature loss:{:.6f}'.format(epoch, epoch_loss, epoch_noise_loss, epoch_feature_loss))
self.train_log_file.write('Training-Epoch {} Loss: {:.6f}, Noise loss: {:.6f}, Feature loss:{:.6f}\n'.format(epoch, epoch_loss, epoch_noise_loss, epoch_feature_loss))
# save model
with torch.no_grad():
if epoch % self.save_epoch == 0:
export_loss(args.ckpt_path + '/total_loss.png', loss_list)
if self.use_floss:
export_loss(args.ckpt_path + '/noise_loss.png', noise_loss_list)
export_loss(args.ckpt_path + '/feature_loss.png', feature_loss_list)
#self.memorybank_testing.Evaluation(epoch)
val_loss = self.log_validation() # Evaluate
val_loss_list.append(val_loss)
export_loss(args.ckpt_path + '/val_loss.png', val_loss_list)
if val_loss < val_best_loss:
val_best_loss = val_loss
model_path = args.ckpt_path + f'/best_controlnet.pth'
torch.save(self.controllora.state_dict(), model_path)
print("### Save Model ###")
if epoch % 25 == 0 and epoch != 0:
model_path = args.ckpt_path + f'/epoch{epoch}_controlnet.pth'
torch.save(self.controllora.state_dict(), model_path)
print("### Save Epoch Model ###")
if __name__ == "__main__":
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Current Device = {device}")
if not os.path.exists(args.ckpt_path):
os.makedirs(args.ckpt_path)
runner = TrainUnet(args=args, device=device)
runner.train()