-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·133 lines (112 loc) · 5.66 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import torch
import datetime
import argparse
import pandas as pd
import os.path as osp
from core.runner import Runner
from utils.utils import set_seeds, log_args
os.environ["TOKENIZERS_PARALLELISM"] = "false"
parser = argparse.ArgumentParser(description='test')
DEBUG = False
# Dataset and environment setup
parser.add_argument('--data_path', default="", type=str)
parser.add_argument('--output_dir', default="./output")
parser.add_argument('--dataset_type', default="eyecandies", help="eyecandies, mvtec3d")
parser.add_argument('--batch_size', default=4, type=int)
parser.add_argument('--image_size', default=256, type=int)
parser.add_argument("--workers", default=4)
parser.add_argument('--CUDA', type=int, default=0, help="choose the device of CUDA")
parser.add_argument('--viz', action="store_true")
parser.add_argument('--seed', type=int, default=7)
# Method choose
parser.add_argument('--method_name', default="controlnet_ddiminv_memory", help="ddim_memory, ddiminvrgb_memory,\
ddiminvnmap_memory, ddiminvunified_memory, controlnet_ddiminv_memory")
parser.add_argument('--rgb_weight', type=float, default=1)
parser.add_argument('--nmap_weight', type=float, default=1)
parser.add_argument('--feature_layers', default=[3], type=int, action='append')
parser.add_argument('--topk', default=3, type=int)
#### Load Checkpoint ####
parser.add_argument("--load_unet_ckpt", default="")
parser.add_argument('--load_controlnet_ckpt', type=str, default="")
# Unet Model (Diffusion Model)
parser.add_argument("--diffusion_id", type=str, default="CompVis/stable-diffusion-v1-4", help="CompVis/stable-diffusion-v1-4, runwayml/stable-diffusion-v1-5")
parser.add_argument("--revision", type=str, default="ebb811dd71cdc38a204ecbdd6ac5d580f529fd8c", help="v1-4:ebb811dd71cdc38a204ecbdd6ac5d580f529fd8c, v1-5:null")
parser.add_argument("--noise_intensity", type=int, default=[81], action='append')
parser.add_argument("--step_size", type=int, default=20)
# Controlnet Model Setup
parser.add_argument("--controllora_linear_rank", type=int, default=4)
parser.add_argument("--controllora_conv2d_rank", type=int, default=0)
def run(args):
MODALITY_NAMES = ['RGB', 'Nmap', 'RGB+Nmap']
if args.dataset_type=='eyecandies':
classes = [
'CandyCane',
'ChocolateCookie',
'ChocolatePraline',
'Confetto',
'GummyBear',
'HazelnutTruffle',
'LicoriceSandwich',
'Lollipop',
'Marshmallow',
'PeppermintCandy'
]
elif args.dataset_type=='mvtec3d':
classes = [
"bagel",
"cable_gland",
"carrot",
"cookie",
"dowel",
"foam",
"peach",
"potato",
"rope",
"tire",
]
else:
raise SyntaxError
result_file = open(osp.join(args.output_dir, "results.txt"), "a", 1)
image_rocaucs_df = pd.DataFrame(MODALITY_NAMES, columns=['Method'])
pixel_rocaucs_df = pd.DataFrame(MODALITY_NAMES, columns=['Method'])
au_pros_df = pd.DataFrame(MODALITY_NAMES, columns=['Method'])
for cls in classes:
runner = Runner(args, cls, MODALITY_NAMES)
runner.fit()
image_rocaucs, pixel_rocaucs, au_pros, rec_loss = runner.evaluate()
image_rocaucs_df[cls.title()] = image_rocaucs_df['Method'].map(image_rocaucs)
pixel_rocaucs_df[cls.title()] = pixel_rocaucs_df['Method'].map(pixel_rocaucs)
au_pros_df[cls.title()] = au_pros_df['Method'].map(au_pros)
print(f"\nFinished running on class {cls}")
print("################################################################################\n\n")
image_rocaucs_df['Mean'] = round(image_rocaucs_df.iloc[:, 1:].mean(axis=1),3)
pixel_rocaucs_df['Mean'] = round(pixel_rocaucs_df.iloc[:, 1:].mean(axis=1),3)
au_pros_df['Mean'] = round(au_pros_df.iloc[:, 1:].mean(axis=1),3)
print("\n\n################################################################################")
print("############################# Image ROCAUC Results #############################")
print("################################################################################\n")
print(image_rocaucs_df.to_markdown(index=False))
result_file.write(f'Image ROCAUC Results \n\n{image_rocaucs_df.to_markdown(index=False)} \n\n')
print("\n\n################################################################################")
print("############################# Pixel ROCAUC Results #############################")
print("################################################################################\n")
print(pixel_rocaucs_df.to_markdown(index=False))
result_file.write(f'Pixel ROCAUC Results \n\n{pixel_rocaucs_df.to_markdown(index=False)} \n\n')
print("\n\n################################################################################")
print("################################ AU PRO Results ################################")
print("################################################################################\n")
print(au_pros_df.to_markdown(index=False))
result_file.write(f'AU PRO Results \n\n{au_pros_df.to_markdown(index=False)} \n\n')
result_file.close()
if __name__ == "__main__":
args = parser.parse_args()
FILE_NAME = f"_{args.method_name}_noiseT{args.noise_intensity}_Layer{args.feature_layers}_StepSize{args.step_size}"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
time = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
args.output_dir = os.path.join(args.output_dir, args.dataset_type, time) + FILE_NAME
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
log_args(args)
print("current device", device)
run(args)