-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopt_algo.py
364 lines (301 loc) · 11.3 KB
/
opt_algo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from utils import *
import numpy as np
import nonlinshrink as nls #nonlinear shrinkage
from sklearn.covariance import LedoitWolf #linear shrinkage
from sklearn.model_selection import KFold, TimeSeriesSplit
from scipy.linalg import block_diag
from joblib import Parallel, delayed
from cvxopt import matrix
from cvxopt import solvers
# import mosek
from statsmodels.robust.scale import qn_scale
######################################################################
#
# CVaR minimization with l1-regularizer
#
######################################################################
import cvxpy as cp
def CVaR_opt_l1(X, alpha, lam=0.,
short=True, renormalize=True, norm=2):
n, d = X.shape
w = cp.Variable(d)
t = cp.Variable(1)
obj = t + cp.sum(cp.maximum(- X @ w - t, 0.))/(1-alpha)/n
if lam>0.: obj += lam * cp.norm(w,1)
objective = cp.Minimize(obj)
constraints = [cp.norm(w, norm) <= 1.,]
if not short:
constraints += [w>=0]
prob = cp.Problem(objective, constraints)
result = prob.solve(solver='ECOS', verbose=False)
w = np.array(w.value)
if np.sum(w**2)>1e-4:
if lam>0.:
w[np.abs(w)<np.max(np.abs(w))/1e3] = 0.
if not short:
w[w<0.] = 0.
if renormalize:
w = w / np.sum(np.abs(w))
else:
w = np.zeros(d)
return w
######################################################################
#
# Cross validation
#
######################################################################
def _fit(X_train, X_val, alpha, **kwargs):
w = CVaR_opt_l1(X_train, alpha, **kwargs)
return np.array([np.sum(w!=0.), cvar( - np.dot(X_val, w), alpha)])
def _cv(X_train, X_val, alpha, lams, **kwargs):
with Parallel(n_jobs=-1, verbose=0) as parallel:
res = parallel(delayed(_fit)(X_train, X_val, alpha, lam=lam, **kwargs) for lam in lams)
return np.array(res)
def CVaR_opt_l1_n(X, alpha, n_lam=100, thres=0.5, n=50, **kwargs):
# Determine delta_max and delta_min automatically
lam_max = np.maximum(np.max(np.mean(np.abs(X), axis=0)) / (1-alpha), 1.) # assuming X>=0
deltas = np.logspace(0, -2, 100)
lams = deltas * lam_max
with Parallel(n_jobs=-1, verbose=0) as parallel:
res = parallel(delayed(_fit)(X, X, alpha, lam=lam, **kwargs) for lam in lams)
res = np.array(res)[:,0]
if np.any(res!=0):
i = np.maximum(np.where(res!=0)[0][0]-1, 0)
delta_max = deltas[i]
t = int(X.shape[1]*thres)
if res[i]<t:
if np.any(res>=t):
i = np.where(res>=t)[0][0]
delta_min = np.mean(deltas[i:i+1] )
else:
delta_min = deltas[-1] * 0.5
else:
delta_min = deltas[i+1]
else:
delta_max = deltas[-1]
delta_min = delta_max * 0.5
# first fit
lams = np.logspace(np.log10(lam_max*delta_min), np.log10(lam_max*delta_max), num=n_lam)[::-1]
res = _cv(X, X, alpha, lams, **kwargs)
id_lam = np.argmin(res[:,1])
if np.any(res>=n):
i = np.where(res>=n)[0][0]
else:
i = -1
delta_min = lams[i]/lam_max
delta_max = lams[np.where(res>0)[0][0]]/lam_max
if delta_max<=delta_min:
w = np.zeros(X.shape[1])
lam = np.nan
else:
# refit
lams = np.logspace(np.log10(lam_max*delta_min), np.log10(lam_max*delta_max), num=n_lam)[::-1]
res = _cv(X, X, alpha, lams, **kwargs)
id_lam = np.argmin(res[(0<res[:,0])&(res[:,0]<=n),1])
lam = lams[(0<res[:,0])&(res[:,0]<=n)][id_lam]
w = CVaR_opt_l1(X, alpha, lam, **kwargs)
w0 = var( - np.dot(X, w), alpha)
return w0, w, lam
def val_CVaR_opt_l1(X, X_val, alpha, n_lam=100, thres=0.5, **kwargs):
# Determine delta_max and delta_min automatically
lam_max = np.maximum(np.max(np.mean(np.abs(X), axis=0)) / (1-alpha), 1.) # assuming X>=0
deltas = np.logspace(0, -2, 100)
lams = deltas * lam_max
with Parallel(n_jobs=-1, verbose=0) as parallel:
res = parallel(delayed(_fit)(X, X, alpha, lam=lam, **kwargs) for lam in lams)
res = np.array(res)[:,0]
if np.any(res!=0):
i = np.maximum(np.where(res!=0)[0][0]-1, 0)
delta_max = deltas[i]
t = int(X.shape[1]*thres)
if res[i]<t:
if np.any(res>=t):
i = np.where(res>=t)[0][0]
delta_min = np.mean(deltas[i:i+1] )
else:
delta_min = deltas[-1] * 0.5
else:
delta_min = deltas[i+1]
else:
delta_max = deltas[-1]
delta_min = delta_max * 0.5
lams = np.logspace(np.log10(lam_max*delta_min), np.log10(lam_max*delta_max), num=n_lam)[::-1]
res = _cv(X, X_val, alpha, lams, **kwargs)
id_lam = np.argmin(res[:,1])
with Parallel(n_jobs=-1, verbose=0) as parallel:
res = parallel(delayed(_fit)(X, X, alpha, lam=lam, **kwargs) for lam in lams[id_lam:])
res = np.array(res)
if np.any(res[:,0]>0):
lam = lams[id_lam:][res[:,0]>0][0]
else:
lam = lams[-1]
w = CVaR_opt_l1(X, alpha, lam, **kwargs)
w0 = var( - np.dot(X, w), alpha)
return w0, w, lam
def cv_CVaR_opt_l1(X, alpha, n_folds=5, n_lam=100, ts_kfold=False, thres=0.5, **kwargs):
# Determine delta_max and delta_min automatically
lam_max = np.maximum(np.max(np.mean(np.abs(X), axis=0)) / (1-alpha), 1.)
deltas = np.logspace(0, -2, 100)
lams = deltas * lam_max
with Parallel(n_jobs=-1, verbose=0) as parallel:
res = parallel(delayed(_fit)(X, X, alpha, lam=lam, **kwargs) for lam in lams)
res = np.array(res)[:,0]
if np.any(res!=0):
i = np.maximum(np.where(res!=0)[0][0]-1, 0)
delta_max = deltas[i]
t = int(X.shape[1]*thres)
if res[i]<t:
if np.any(res>=t):
j = np.where(res>=t)[0][0]
delta_min_global = deltas[j]
delta_min = (delta_min_global + deltas[j-1])/2
else:
delta_min_global = deltas[-1]/10.
delta_min = deltas[-1] * 0.5
else:
delta_min = deltas[i+1]
delta_min_global = delta_min
else:
delta_max = deltas[-1]
delta_min = delta_max * 0.5
delta_min_global = deltas[-1]/10.
while True:
lams = np.logspace(np.log10(lam_max*delta_max), np.log10(lam_max*delta_min), num=n_lam)
if ts_kfold:
kf = TimeSeriesSplit(n_splits=n_folds)
else:
kf = KFold(n_splits=n_folds, shuffle=True, random_state=0)
with Parallel(n_jobs=-1, verbose=0) as parallel:
cvar_val = parallel(delayed(_cv)(
X[train_index], X[val_index], alpha, lams, **kwargs
) for (train_index, val_index) in kf.split(X))
cvar_val = np.array(cvar_val)[:,:,1]
# if 0 actually obtains minimum, then no allocation
# otherwise, lower lambda and keep searching
if np.any(cvar_val!=0.):
id_lam = np.argmin(np.mean(cvar_val, axis=0))
lam = lams[id_lam]
break
else:
if delta_min==delta_min_global:
lam = lams[-1]
break
delta_min, delta_max = delta_min * 0.5, delta_min
w = CVaR_opt_l1(X, alpha, lam, **kwargs)
w0 = var( - np.dot(X, w), alpha)
return w0, w, lam
######################################################################
#
# Global minimum variance optimization with l1-constraints
#
######################################################################
def GMV_opt(X, method, r_0=1., short=True):
Sigma = cov(X, method)
d = Sigma.shape[0]
eps = 1e-6
delta = np.finfo(np.float64).eps
while eps<1.:
try:
if short:
# variables [w, p] dimension [d, d]
# min w^TXw
# -p <= w <= p
# -p <= 0
# 1^Tp <= r_0
P = matrix(block_diag(Sigma, np.zeros((d,d))), tc='d')
q = matrix(np.zeros(2*d), tc='d')
G = matrix(np.block([
[np.zeros((d,d)), -np.eye(d)],
[np.eye(d), -np.eye(d)],
[-np.eye(d), -np.eye(d)]]), tc='d')
h = matrix(np.zeros((3*d,1)), tc='d')
A = matrix(np.c_[np.zeros((1,d)), np.ones((1,d))], tc='d')
b = matrix(np.ones((1,1))*r_0, tc='d')
else:
# variables [w, p] dimension [d, d]
# min w^TXw
# -w <= 0
# 1^Tw == r_0
P = matrix(Sigma, tc='d')
q = matrix(np.zeros(d), tc='d')
G = matrix(-np.eye(d), tc='d')
h = matrix(np.zeros(d), tc='d')
A = matrix(np.ones((1,d)), tc='d')
b = matrix(np.ones((1,1))*r_0, tc='d')
sol = solvers.qp(P,q,G,h,A,b, options={'show_progress': False,
'abstol':1e-12, 'reltol':1e-11,
'maxiters':int(1e4), #'feastol':1e-16
})
res = np.array(sol['x']).flatten()
w = res[:d]
if short:
w[np.abs(w)<=delta] = 0.
w = w/np.sum(np.abs(w))*r_0
else:
w[w<=delta] = 0.
w = proj(w/r_0)*r_0
break
except:
print('singular')
Sigma = Sigma + np.identity(d) * eps
eps *= 10
return w
def proj(w):
d = w.shape[0]
sort_w = -np.sort(-w, axis=None)
tmp = (np.cumsum(sort_w) - 1) * (1.0/np.arange(1,d+1))
rho = np.sum(sort_w > tmp) - 1
w = np.maximum(w - tmp[rho], 0)
return w
######################################################################
#
# Covariance matrix estimation
#
######################################################################
def Qn_corr(n):
if n <= 12:
return 1/ np.array(
[.399356, .99365, .51321, .84401, .61220,
.85877, .66993, .87344, .72014, .88906, .75743])[n-2]
else:
if n%2==1:
c = 1.60188 +(-2.1284 - 5.172/n)/n
else:
c = 3.67561 +( 1.9654 +(6.987 - 77/n)/n)/n
return c/n + 1
def QNE(X, corr=True):
n, d = X.shape
if n == 1: return 0.
Q = np.vectorize(
lambda i:
np.r_[np.zeros(i), (qn_scale(X[:,i:i+1]+X[:,i:])**2 - qn_scale(X[:,i:i+1]-X[:,i:])**2)/4],
signature='()->(n)')(np.arange(d))
Q = Q + Q.T - np.diag(np.diag(Q))
if corr:
Q /= Qn_corr(n)**2
eigval, eigvec = np.linalg.eig(Q)
eigval[eigval < 1e-5] = 0.
Q = eigvec.dot(np.diag(eigval)).dot(eigvec.T)
return Q
def cov(X, method):
'''
Parameters
----------
X : np.array
The sample matrix with size \(n, p\).
method : str
The method used to estimate the covariance.
Returns
----------
Cov : np.array
The estimated covariance matrix.
'''
if method.startswith('GMV-P'):
return np.cov(X, rowvar = False)
elif method.startswith('GMV-LS'):
cov = LedoitWolf(assume_centered = False).fit(X)
return cov.covariance_
elif method.startswith('GMV-NLS'):
return nls.shrink_cov(X)
elif method.startswith('QNE'):
return QNE(X)