-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathp12.erl
37 lines (31 loc) · 1.18 KB
/
p12.erl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
-module(p12).
-export([answer/0, triangle_iterator/0]).
%% The sequence of triangle numbers is generated by adding the natural numbers.
%% So the 7^(th) triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
%% 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
%% Let us list the factors of the first seven triangle numbers:
%% 1: 1
%% 3: 1, 3
%% 6: 1, 2, 3, 6
%% 10: 1, 2, 5, 10
%% 15: 1, 3, 5, 15
%% 21: 1, 3, 7, 21
%% 28: 1, 2, 4, 7, 14, 28
%% We can see that 28 is the first triangle number to have over five divisors.
%% What is the value of the first triangle number to have over five hundred divisors?
answer() ->
TriNums = triangle_iterator(),
find_factors(TriNums(), 501).
find_factors([Tri | Next], NumFactors) ->
FoundFactors = count_factors(Tri),
case FoundFactors < NumFactors of
true -> find_factors(Next(), NumFactors);
_Else -> Tri
end.
count_factors(N) ->
lists:foldl(fun({_Prime, C}, Acc) -> Acc*(C+1) end, 1, primes:prime_factors(N)).
triangle_iterator() ->
fun() -> tri_iter(2, 1) end.
% N is the next Tri#< whereas Tri is the current Tri#
tri_iter(N, Tri) ->
[ Tri | fun() -> tri_iter(N+1, N+Tri) end ].