-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
489 lines (374 loc) · 23.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import csv
import pandas as pd
import numpy as np
from statistics import mean
from statistics import variance as var
import plotly.graph_objects as go
import pdb
# from utils import data_to_frame
def data_to_frame(head, BatchSize1000=False):
frames = []
dict_list = []
for file_ind in range(1,51):
frames.append(pd.read_csv(head + "%s.csv"%(file_ind), header=4))
dur_units = frames[file_ind-1].iloc[0].to_numpy()[1]
mem_units = frames[file_ind-1].iloc[0].to_numpy()[11]
thp_units = frames[file_ind-1].iloc[0].to_numpy()[12]
values_arr = frames[file_ind-1].iloc[1:].to_numpy()
if dur_units == 'ms':
values_arr[:,1] = values_arr[:,1].astype(float)*1000
if thp_units == 'GB/s':
values_arr[:,12] = values_arr[:,12].astype(float)*1000
if mem_units == 'MB':
values_arr[:,11] = values_arr[:,11].astype(float)*1000
for i in range(np.shape(values_arr)[0]):
values = np.append(values_arr[i,:], file_ind)
values = np.append(values, i)
dict_list.append(dict(zip(list(frames[file_ind-1].columns) + ['Trial'] + ['CudaCode'], values)))
cleaned_frame = pd.DataFrame(data=dict_list,columns=list(frames[0].columns) + ['Trial'] + ['CudaCode'])
cleaned_frame.Duration = pd.to_numeric(cleaned_frame.Duration)
cleaned_frame.Throughput = pd.to_numeric(cleaned_frame.Throughput)
cleaned_frame.Size = pd.to_numeric(cleaned_frame.Size)
if BatchSize1000:
cleaned_frame.Duration = cleaned_frame.Duration/(1000)
return cleaned_frame
# Used for plotting the kernels that appear in all layers of both BatchSize=1 and BatchSize=1000
def plot_hist(kernel_name_1, bin_size_1, kernel_name_1000, bin_size_1000, layer_dfs):
fig1 = go.Figure()
fig1000 = go.Figure()
# BatchSize=1
fig1.add_trace(go.Histogram(x=layer_dfs['l1_df'].query('Name==\'%s\''%kernel_name_1).Duration, name='L1: '+kernel_name_1[:15], xbins=dict(size=bin_size_1), marker_color='lightblue'))
fig1.add_trace(go.Histogram(x=layer_dfs['l2_df'].query('Name==\'%s\''%kernel_name_1).Duration, name='L2: '+kernel_name_1[:15], xbins=dict(size=bin_size_1), marker_color='blue'))
fig1.add_trace(go.Histogram(x=layer_dfs['l3_df'].query('Name==\'%s\''%kernel_name_1).Duration, name='L3: '+kernel_name_1[:15], xbins=dict(size=bin_size_1), marker_color='darkblue'))
# BatchSize=1000
fig1000.add_trace(go.Histogram(x=layer_dfs['l1_df_1000'].query('Name==\'%s\''%kernel_name_1000).Duration, name='L1: '+kernel_name_1000[:15], xbins=dict(size=bin_size_1000), marker_color='lightgreen'))
fig1000.add_trace(go.Histogram(x=layer_dfs['l2_df_1000'].query('Name==\'%s\''%kernel_name_1000).Duration, name='L2: '+kernel_name_1000[:15], xbins=dict(size=bin_size_1000), marker_color='green'))
fig1000.add_trace(go.Histogram(x=layer_dfs['l3_df_1000'].query('Name==\'%s\''%kernel_name_1000).Duration, name='L3: '+kernel_name_1000[:15], xbins=dict(size=bin_size_1000), marker_color='darkgreen'))
# Additional formatting and titles
fig1.update_layout(barmode='overlay',
title_text='BatchSize=1 Kernel Runtime Variations',
xaxis_title_text='Kernel Duration (us)',
yaxis_title_text='Number of Occurances (out of 50 trials)'
)
fig1.update_traces(opacity=.75)
fig1000.update_layout(barmode='overlay',
title_text='BatchSize=1 Kernel Runtime Variations',
xaxis_title_text='Kernel Duration (us)',
yaxis_title_text='Number of Occurances (out of 50 trials)'
)
fig1000.update_traces(opacity=.75)
fig1.show()
fig1000.show()
# Used for plotting the main workload
def plot_hist_workload_kernels(layer_dfs):
fig1 = go.Figure()
fig1000 = go.Figure()
###### BatchSize=1, Layer1
fig1.add_trace(go.Histogram(x=layer_dfs['l1_df'].query('Name==\'%s\''%layer_dfs['names_l1_1'][1]).Duration, name='L1:'+layer_dfs['names_l1_1'][1][:15], marker_color='lightblue'))
fig1.add_trace(go.Histogram(x=layer_dfs['l1_df'].query('Name==\'%s\''%layer_dfs['names_l1_1'][2]).Duration, name='L1:'+layer_dfs['names_l1_1'][2][:15], marker_color='blue'))
# BatchSize=1, Layer2
fig1.add_trace(go.Histogram(x=layer_dfs['l2_df'].query('Name==\'%s\''%layer_dfs['names_l2_1'][1]).Duration, name='L2:'+layer_dfs['names_l2_1'][1][:15], marker_color='lightgreen'))
fig1.add_trace(go.Histogram(x=layer_dfs['l2_df'].query('Name==\'%s\''%layer_dfs['names_l2_1'][2]).Duration, name='L2:'+layer_dfs['names_l2_1'][2][:15], marker_color='green'))
# BatchSize=1, Layer3
fig1.add_trace(go.Histogram(x=layer_dfs['l3_df'].query('Name==\'%s\''%layer_dfs['names_l3_1'][1]).Duration, name='L3:'+layer_dfs['names_l3_1'][1][:15], marker_color='lightsalmon'))
fig1.add_trace(go.Histogram(x=layer_dfs['l3_df'].query('Name==\'%s\''%layer_dfs['names_l3_1'][2]).Duration, name='L3:'+layer_dfs['names_l3_1'][2][:15], marker_color='red'))
###### BatchSize=1000, Layer1
fig1000.add_trace(go.Histogram(x=layer_dfs['l1_df_1000'].query('Name==\'%s\''%layer_dfs['names_l1_1000'][1]).Duration, name='L1: '+layer_dfs['names_l1_1000'][1][:15], marker_color='lightblue'))
fig1000.add_trace(go.Histogram(x=layer_dfs['l1_df_1000'].query('Name==\'%s\''%layer_dfs['names_l1_1000'][2]).Duration, name='L1: '+layer_dfs['names_l1_1000'][2][:15], marker_color='blue'))
# BatchSize=1, Layer2
fig1000.add_trace(go.Histogram(x=layer_dfs['l2_df_1000'].query('Name==\'%s\''%layer_dfs['names_l2_1000'][1]).Duration, name='L2: '+layer_dfs['names_l2_1000'][1][:15], marker_color='lightgreen'))
fig1000.add_trace(go.Histogram(x=layer_dfs['l2_df_1000'].query('Name==\'%s\''%layer_dfs['names_l2_1000'][2]).Duration, name='L2: '+layer_dfs['names_l2_1000'][2][:15], marker_color='green'))
fig1000.add_trace(go.Histogram(x=layer_dfs['l2_df_1000'].query('Name==\'%s\''%layer_dfs['names_l2_1000'][3]).Duration, name='L2: '+layer_dfs['names_l2_1000'][3][:15], marker_color='darkgreen'))
fig1000.add_trace(go.Histogram(x=layer_dfs['l2_df_1000'].query('Name==\'%s\''%layer_dfs['names_l2_1000'][4]).Duration, name='L2: '+layer_dfs['names_l2_1000'][4][:15], marker_color='forestgreen'))
# BatchSize=1, Layer3
fig1000.add_trace(go.Histogram(x=layer_dfs['l3_df_1000'].query('Name==\'%s\''%layer_dfs['names_l3_1000'][1]).Duration, name='L3: '+layer_dfs['names_l3_1000'][1][:15], marker_color='lightsalmon'))
fig1000.add_trace(go.Histogram(x=layer_dfs['l3_df_1000'].query('Name==\'%s\''%layer_dfs['names_l3_1000'][2]).Duration, name='L3: '+layer_dfs['names_l3_1000'][2][:15], marker_color='red'))
# Additional formatting and titles
fig1.update_layout(barmode='overlay',
title_text='Kernel Runtime Variations (BatchSize=1, main compute kernels)',
xaxis_title_text='Kernel Duration (us)',
yaxis_title_text='Number of Occurances (out of 50 trials)'
)
fig1.update_traces(opacity=.75)
fig1000.update_layout(barmode='overlay',
title_text='Kernel Runtime Variations (BatchSize=1000; main compute kernels)',
xaxis_title_text='Kernel Duration (us)',
yaxis_title_text='Number of Occurances (out of 50 trials)'
)
fig1000.update_traces(opacity=.75)
fig1.show()
fig1000.show()
# Use for extracting the throughputs for load weights & data, and dumping output (all off chip transfers)
def calc_throughput(dataframe, weight_cudacall_id, input_cudacall_id, output_cudacall_id):
thp_dict = {}
thp_dict['w_size (KB)'] = mean(dataframe.query('CudaCode==%s'%weight_cudacall_id).Size)
thp_dict['w_throughput (MB/s)'] = mean(dataframe.query('CudaCode==%s'%weight_cudacall_id).Throughput)
thp_dict['i_size (KB)'] = mean(dataframe.query('CudaCode==%s'%input_cudacall_id).Size)
thp_dict['i_throughput (MB/s)'] = mean(dataframe.query('CudaCode==%s'%input_cudacall_id).Throughput)
thp_dict['o_size (KB)'] = mean(dataframe.query('CudaCode==%s'%output_cudacall_id).Size)
thp_dict['o_throughput (MB/s)'] = mean(dataframe.query('CudaCode==%s'%output_cudacall_id).Throughput)
return(thp_dict)
def get_kernels(layer_df):
names = []
names_raw = layer_df.Name.unique()
for nr in names_raw:
if not ('mem' in nr):
names.append(nr)
return(names)
def coeffvar(data_frame):
return (var(data_frame)**(1/2))/mean(data_frame)
def fileToFrame(fileName, layer, batchSize, trial):
# valid and working. will override this function with LayerDimensionalityTesting
frame = pd.read_csv(fileName, header=4)
dur_units = frame.iloc[0].to_numpy()[1]
mem_units = frame.iloc[0].to_numpy()[11]
thp_units = frame.iloc[0].to_numpy()[12]
values_arr = frame.iloc[1:].to_numpy()
if dur_units == 'ms':
values_arr[:,1] = values_arr[:,1].astype(float)*1000
if dur_units in ('S', 's'):
# assert False, "Uh-oh. dur-units = s"
values_arr[:,1] = values_arr[:,1].astype(float)*1000000
if dur_units == 'ns':
values_arr[:,1] = values_arr[:,1].astype(float)/1000
# assert False, "Uh-oh. dur-units = ns"
if thp_units == 'GB/s':
values_arr[:,12] = values_arr[:,12].astype(float)*1000
if thp_units in ('KB/s', 'kB/s'):
# assert False, "Uh-oh. thp-units = KB/s"
values_arr[:,12] = values_arr[:,12].astype(float)/1000
if thp_units in ('B/s', 'b/s'):
# assert False, "Uh-oh. thp-units = B/s"
values_arr[:,12] = values_arr[:,12].astype(float)/1000000
if mem_units in ('B'):
# assert False, "Uh-oh. mem-units = B"
values_arr[:,11] = values_arr[:,11].astype(float)/1000
if mem_units == 'MB':
values_arr[:,11] = values_arr[:,11].astype(float)*1000
if mem_units == 'GB':
# assert False, "Uh-oh. thp-units = GB/s"
values_arr[:,11] = values_arr[:,11].astype(float)*1000000
series = []
for i in range(np.shape(values_arr)[0]):
values = np.append(values_arr[i,:], trial)
values = np.append(values, i)
values = np.append(values, batchSize)
values = np.append(values, layer)
series.append((dict(zip(list(frame.columns) + ['Trial'] + ['CudaCode'] + ['batchSize'] + ['Layer'], values))))
cleaned_frame = pd.DataFrame(data=series, columns=list(frame.columns) + ['Trial'] + ['CudaCode'] + ['batchSize'] + ['Layer'])
cleaned_frame.Duration = pd.to_numeric(cleaned_frame.Duration)
cleaned_frame.Throughput = pd.to_numeric(cleaned_frame.Throughput)
cleaned_frame.Size = pd.to_numeric(cleaned_frame.Size)
cleaned_frame = cleaned_frame.rename(columns={'Name':'Kernel'})
return(cleaned_frame)
def fileToFrameFLOPS(fileName, layer, batchSize, trial):
# valid and working. will override this function with LayerDimensionalityTesting
frame = pd.read_csv(fileName, header=5)
values_arr = frame.iloc[0:].to_numpy()
series = []
for i in range(np.shape(values_arr)[0]):
for j in range(5,8):
data = values_arr[i][j]
if 'KB/s' in data:
# assert False, "Uh-oh. units"
values_arr[i][j] = float(values_arr[i][j][:-4])/1000
if 'MB/s' in data:
values_arr[i][j] = float(values_arr[i][j][:-4])
if 'GB/s' in data:
values_arr[i][j] = float(values_arr[i][j][:-4])*1000
if '%' in data:
values_arr[i][j] = float(values_arr[i][j][:-1])/100
values_arr[i][j] = float(values_arr[i][j])
assert(isinstance(values_arr[i][j], float))
values = np.append(values_arr[i,:], trial)
values = np.append(values, i)
values = np.append(values, batchSize)
values = np.append(values, layer)
series.append((dict(zip(list(frame.columns) + ['Trial'] + ['MetricCode'] + ['batchSize'] + ['Layer'], values))))
cleaned_frame = pd.DataFrame(data=series, columns=list(frame.columns) + ['Trial'] + ['MetricCode'] + ['batchSize'] + ['Layer'])
cols = cleaned_frame.columns
cols = cols.map(lambda x: x.replace(' ', '_') if isinstance(x, (str)) else x)
cleaned_frame.columns = cols
return(cleaned_frame)
def get_stats(flop_metrics_frame, trace_frame, layers):
LayerKernelStatsDict = {}
nl = 50
Stats = ['achieved_occupancy', 'sm_efficiency', 'flops', 'kern_runtime_avg', 'kern_runtime_std']
for l in layers:
LayerKernelStatsDict['L%s'%l] = {}
kernels = list(flop_metrics_frame.query('Layer==%s'%l)['Kernel'].unique())
for k in kernels:
LayerKernelStatsDict['L%s'%l]['L%s: %s'%(l,k[:nl])] = {}
for k in kernels:
LayerKernelStatsDict['L%s'%l]['L%s: %s'%(l,k[:nl])][Stats[0]] = list(flop_metrics_frame.query('Layer==%s and Kernel==\'%s\' and Metric_Name==\'achieved_occupancy\''%(l,k))['Avg'])[0]
LayerKernelStatsDict['L%s'%l]['L%s: %s'%(l,k[:nl])][Stats[1]] = list(flop_metrics_frame.query('Layer==%s and Kernel==\'%s\' and Metric_Name==\'sm_efficiency\''%(l,k))['Avg'])[0]
flops = flop_metrics_frame[flop_metrics_frame['Metric_Name'].str.contains('flop_count')]
# pdb.set_trace()
LayerKernelStatsDict['L%s'%l]['L%s: %s'%(l,k[:nl])][Stats[2]] = int(flops.query('Layer==%s and Kernel==\'%s\''%(l,k))['Avg'].sum())
LayerKernelStatsDict['L%s'%l]['L%s: %s'%(l,k[:nl])][Stats[3]] = trace_frame.query('Layer==%s and Kernel==\'%s\''%(l,k))['Duration'].mean()
LayerKernelStatsDict['L%s'%l]['L%s: %s'%(l,k[:nl])][Stats[4]] = trace_frame.query('Layer==%s and Kernel==\'%s\''%(l,k))['Duration'].std()
LayerKernelStatsDict['L%s'%l]['L%s: %s'%(l,k[:nl])]['Layer'] = l
# Transform dictionary into the two dataframes we care about:
stats = []
for l in layers:
stats.append(pd.DataFrame.from_dict(LayerKernelStatsDict['L%s'%l],orient='index'))
kernel_stats_frame = pd.concat(stats)
# pdb.set_trace()
layer_stats_frame = kernel_stats_frame.groupby('Layer').sum()
# Can't just sum up achieved_occupancy and sm_efficiency, so we need to compute weighted average:
total_runtimes = dict(layer_stats_frame.kern_runtime_avg)
total_runtimes_ = [0]*10 # Ten is arbitrary. Value must be large enough to store a value for every potential layer of a network (eg. MNIST -> 3, but PGAN requires -> 6). 10 is to be safe
for layer in total_runtimes:
total_runtimes_[layer-1] = total_runtimes[layer]
#######
new_sm_eff = [0]*10 # see comment above
new_ach_occ = [0]*10
for row in range(len(kernel_stats_frame)):
# pdb.set_trace()
new_sm_eff[int(kernel_stats_frame.iloc[row]['Layer'])-1] += kernel_stats_frame.iloc[row]['sm_efficiency']*kernel_stats_frame.iloc[row]['kern_runtime_avg']/total_runtimes_[int(kernel_stats_frame.iloc[row]['Layer'])-1]
new_ach_occ[int(kernel_stats_frame.iloc[row]['Layer'])-1] += kernel_stats_frame.iloc[row]['achieved_occupancy']*kernel_stats_frame.iloc[row]['kern_runtime_avg']/total_runtimes_[int(kernel_stats_frame.iloc[row]['Layer'])-1]
######
new_sm_eff = [i for i in new_sm_eff if i != 0]
new_ach_occ = [i for i in new_ach_occ if i != 0]
# pdb.set_trace()
layer_stats_frame['achieved_occupancy']=new_ach_occ
layer_stats_frame['sm_efficiency']=new_sm_eff
layer_stats_frame['bytes_fetched'] = list(trace_frame.query('(Kernel==\'[CUDA memcpy HtoD]\' or Kernel==\'[CUDA memcpy DtoH]\') and Trial==1').groupby('Layer').sum().Size)
layer_stats_frame['throughput'] = list((layer_stats_frame["flops"]/1e9)/(layer_stats_frame["kern_runtime_avg"]/1e6))
layer_stats_frame['arithmetic_intensity'] = list((layer_stats_frame["flops"])/(layer_stats_frame["bytes_fetched"]*1e3))
layer_stats_frame = layer_stats_frame.rename(columns={'kern_runtime_avg':'layer_runtime_avg', 'kern_runtime_std':'layer_runtime_std'})
return layer_stats_frame, kernel_stats_frame, LayerKernelStatsDict
def fileToFrameLayerDimProf(fileName, layer, batchSize, trial, LayerDepthIn, LayerDepthOut, K, dimToBeVaried):
#dimToBeVaried = "IN", "OUT", "K"
if not (dimToBeVaried=="IN" or dimToBeVaried=="OUT" or dimToBeVaried=="K"):
print("Bad value for dimToBeVaried")
assert(False)
frame = pd.read_csv(fileName, header=4)
dur_units = frame.iloc[0].to_numpy()[1]
mem_units = frame.iloc[0].to_numpy()[11]
thp_units = frame.iloc[0].to_numpy()[12]
values_arr = frame.iloc[1:].to_numpy()
if dur_units == 'ms':
values_arr[:,1] = values_arr[:,1].astype(float)*1000
if dur_units == 's':
values_arr[:,1] = values_arr[:,1].astype(float)*1000000
assert(False) # I'd like to know about this
if thp_units == 'KB/s':
values_arr[:,12] = values_arr[:,12].astype(float)/1000
assert(False) # I'd like to know about this
if thp_units == 'GB/s':
values_arr[:,12] = values_arr[:,12].astype(float)*1000
if mem_units == 'B':
values_arr[:,11] = values_arr[:,11].astype(float)/1000
if mem_units == 'MB':
values_arr[:,11] = values_arr[:,11].astype(float)*1000
if mem_units == 'GB':
values_arr[:,11] = values_arr[:,11].astype(float)*1000000
series = []
for i in range(np.shape(values_arr)[0]):
values = np.append(values_arr[i,:], trial)
values = np.append(values, i)
values = np.append(values, batchSize)
values = np.append(values, layer)
values = np.append(values, LayerDepthIn)
values = np.append(values, LayerDepthOut)
values = np.append(values, K)
values = np.append(values, dimToBeVaried)
series.append((dict(zip(list(frame.columns) + ['Trial'] + ['CudaCode'] + ['batchSize'] + ['Layer'] + ['LayerDepthIn'] + ['LayerDepthOut'] + ['K'] + ['VariedDimension'], values))))
cleaned_frame = pd.DataFrame(data=series, columns=list(frame.columns) + ['Trial'] + ['CudaCode'] + ['batchSize'] + ['Layer'] + ['LayerDepthIn'] + ['LayerDepthOut'] + ['K'] + ['VariedDimension'])
cleaned_frame.Duration = pd.to_numeric(cleaned_frame.Duration)
cleaned_frame.Throughput = pd.to_numeric(cleaned_frame.Throughput)
cleaned_frame.Size = pd.to_numeric(cleaned_frame.Size)
cleaned_frame = cleaned_frame.rename(columns={'Name':'Kernel'})
return(cleaned_frame)
def fileToFrameLayerDimProfFLOPS(fileName, layer, batchSize, LayerDepthIn, LayerDepthOut, K, dimToBeVaried):
# valid and working. will override this function with LayerDimensionalityTesting
#dimToBeVaried = "IN", "OUT", "K"
if not (dimToBeVaried=="IN" or dimToBeVaried=="OUT" or dimToBeVaried=="K"):
print("Bad value for dimToBeVaried")
assert(False)
frame = pd.read_csv(fileName, header=5)
values_arr = frame.iloc[0:].to_numpy()
series = []
for i in range(np.shape(values_arr)[0]):
for j in range(5,8):
data = values_arr[i][j]
if 'MB/s' in data:
values_arr[i][j] = float(values_arr[i][j][:-4])
if 'GB/s' in data:
values_arr[i][j] = float(values_arr[i][j][:-4])*1000
if '%' in data:
values_arr[i][j] = float(values_arr[i][j][:-1])/100
values_arr[i][j] = float(values_arr[i][j])
assert(isinstance(values_arr[i][j], float))
# values = np.append(values_arr[i,:], trial)
values = np.append(values_arr[i,:], i)
values = np.append(values, batchSize)
values = np.append(values, layer)
values = np.append(values, LayerDepthIn)
values = np.append(values, LayerDepthOut)
values = np.append(values, K)
values = np.append(values, dimToBeVaried)
series.append((dict(zip(list(frame.columns) + ['MetricCode'] + ['batchSize'] + ['Layer'] + ['LayerDepthIn'] + ['LayerDepthOut'] + ['K'] + ['VariedDimension'], values))))
cleaned_frame = pd.DataFrame(data=series, columns=list(frame.columns) + ['MetricCode'] + ['batchSize'] + ['Layer'] + ['LayerDepthIn'] + ['LayerDepthOut'] + ['K'] + ['VariedDimension'])
cols = cleaned_frame.columns
cols = cols.map(lambda x: x.replace(' ', '_') if isinstance(x, (str)) else x)
cleaned_frame.columns = cols
return(cleaned_frame)
def get_stats_varyingInChanDepth(flop_metrics_frame, trace_frame, layers, din):
# din = list of values that input was varied over
layerstats_ldp = []
kernelstats_ldp = []
for d in din:
flop_metrics_frame_tailored = flop_metrics_frame.query('LayerDepthIn==%s and VariedDimension==\"IN\"'%d)
trace_frame_tailored = trace_frame.query('LayerDepthIn==%s and VariedDimension==\"IN\"'%d)
# pdb.set_trace()
layer_stats, kern_stats, dictionary = get_stats(flop_metrics_frame_tailored, trace_frame_tailored, layers)
layer_stats['LayerDepthIn'] = [d]*len(layer_stats)
kern_stats['LayerDepthIn'] = [d]*len(kern_stats)
layerstats_ldp.append(layer_stats)
kernelstats_ldp.append(kern_stats)
layerstats_df = pd.concat(layerstats_ldp)
kernelstats_df = pd.concat(kernelstats_ldp)
return layerstats_df, kernelstats_df
def get_stats_varyingOutChanDepth(flop_metrics_frame, trace_frame, layers, dout):
# dout = list of values that input was varied over
layerstats_ldp = []
kernelstats_ldp = []
for d in dout:
flop_metrics_frame_tailored = flop_metrics_frame.query('LayerDepthOut==%s and VariedDimension==\"OUT\"'%d)
trace_frame_tailored = trace_frame.query('LayerDepthOut==%s and VariedDimension==\"OUT\"'%d)
# pdb.set_trace()
layer_stats, kern_stats, dictionary = get_stats(flop_metrics_frame_tailored, trace_frame_tailored, layers)
layer_stats['LayerDepthOut'] = [d]*len(layer_stats)
kern_stats['LayerDepthOut'] = [d]*len(kern_stats)
layerstats_ldp.append(layer_stats)
kernelstats_ldp.append(kern_stats)
layerstats_df = pd.concat(layerstats_ldp)
kernelstats_df = pd.concat(kernelstats_ldp)
return layerstats_df, kernelstats_df
def get_stats_varyingK(flop_metrics_frame, trace_frame, layers, dk):
# dk = list of values that input was varied over
layerstats_ldp = []
kernelstats_ldp = []
for d in dk:
flop_metrics_frame_tailored = flop_metrics_frame.query('K==%s and VariedDimension==\"K\"'%d)
trace_frame_tailored = trace_frame.query('K==%s and VariedDimension==\"K\"'%d)
# pdb.set_trace()
layer_stats, kern_stats, dictionary = get_stats(flop_metrics_frame_tailored, trace_frame_tailored, layers)
layer_stats['K'] = [d]*len(layer_stats)
kern_stats['K'] = [d]*len(kern_stats)
layerstats_ldp.append(layer_stats)
kernelstats_ldp.append(kern_stats)
layerstats_df = pd.concat(layerstats_ldp)
kernelstats_df = pd.concat(kernelstats_ldp)
return layerstats_df, kernelstats_df
def scatter(layer_stats, data_labels, data_label_size, xaxis_lbl, yaxis_lbl):
roofline = [(layer_stats.iloc[i].arithmetic_intensity, layer_stats.iloc[i].throughput) for i in range(len(layer_stats))]
# mnist_lbls = ['L%s::Bs%s'%(i[0],i[1]) for i in mnist_label_tuples]
labels = hv.Labels({(xaxis_lbl, yaxis_lbl): roofline, 'text': data_labels}, [xaxis_lbl, yaxis_lbl], 'text')
labels.opts(opts.Labels(text_font_size=data_label_size, yoffset=0.015))
scatter = hv.Scatter(roofline)
scatter.opts(cmap='cool', size=10, alpha=.25)
plot = labels*scatter
return plot