-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbinaryfield.go
215 lines (189 loc) · 6.55 KB
/
binaryfield.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
package adss
import (
"crypto/subtle"
"io"
)
// This implementation has been copied over from hashicorp's vault/shamir implementation
// with some minor modifications to make it compatible with our shamir implementations.
// polynomial represents a polynomial of arbitrary degree
type polynomial struct {
coefficients []uint8
}
// makePolynomial constructs a random polynomial of the given
// degree but with the provided intercept value.
func makePolynomial(intercept, degree uint8, randReader io.Reader) (polynomial, error) {
// Create a wrapper
p := polynomial{
coefficients: make([]byte, degree+1),
}
// Ensure the intercept is set
p.coefficients[0] = intercept
// Assign random co-efficients to the polynomial
if _, err := randReader.Read(p.coefficients[1:]); err != nil {
return p, err
}
return p, nil
}
// evaluate returns the value of the polynomial for the given x
func (p *polynomial) evaluate(x uint8) uint8 {
// Special case the origin
if x == 0 {
return p.coefficients[0]
}
// Compute the polynomial value using Horner's method.
degree := len(p.coefficients) - 1
out := p.coefficients[degree]
for i := degree - 1; i >= 0; i-- {
coeff := p.coefficients[i]
out = add(mult(out, x), coeff)
}
return out
}
// interpolatePolynomial takes N sample points and returns
// the value at a given x using a lagrange interpolation.
func interpolatePolynomial(x_samples, y_samples []uint8, x uint8) uint8 {
limit := len(x_samples)
var result, basis uint8
for i := 0; i < limit; i++ {
basis = 1
for j := 0; j < limit; j++ {
if i == j {
continue
}
num := add(x, x_samples[j])
denom := add(x_samples[i], x_samples[j])
term := div(num, denom)
basis = mult(basis, term)
}
group := mult(y_samples[i], basis)
result = add(result, group)
}
return result
}
// div divides two numbers in GF(2^8)
func div(a, b uint8) uint8 {
if b == 0 {
// leaks some timing information but we don't care anyways as this
// should never happen, hence the panic
panic("divide by zero")
}
var goodVal, zero uint8
log_a := logTable[a]
log_b := logTable[b]
diff := (int(log_a) - int(log_b)) % 255
if diff < 0 {
diff += 255
}
ret := expTable[diff]
// Ensure we return zero if a is zero but aren't subject to timing attacks
goodVal = ret
if subtle.ConstantTimeByteEq(a, 0) == 1 {
ret = zero
} else {
ret = goodVal
}
return ret
}
// mult multiplies two numbers in GF(2^8)
func mult(a, b uint8) (out uint8) {
var goodVal, zero uint8
log_a := logTable[a]
log_b := logTable[b]
sum := (int(log_a) + int(log_b)) % 255
ret := expTable[sum]
// Ensure we return zero if either a or b are zero but aren't subject to
// timing attacks
goodVal = ret
if subtle.ConstantTimeByteEq(a, 0) == 1 {
ret = zero
} else {
ret = goodVal
}
if subtle.ConstantTimeByteEq(b, 0) == 1 {
ret = zero
} else {
// This operation does not do anything logically useful. It
// only ensures a constant number of assignments to thwart
// timing attacks.
goodVal = zero
}
return ret
}
// add combines two numbers in GF(2^8)
// This can also be used for subtraction since it is symmetric.
func add(a, b uint8) uint8 {
return a ^ b
}
// Tables taken from http://www.samiam.org/galois.html
// They use 0xe5 (229) as the generator
var (
// logTable provides the log(X)/log(g) at each index X
logTable = [256]uint8{
0x00, 0xff, 0xc8, 0x08, 0x91, 0x10, 0xd0, 0x36,
0x5a, 0x3e, 0xd8, 0x43, 0x99, 0x77, 0xfe, 0x18,
0x23, 0x20, 0x07, 0x70, 0xa1, 0x6c, 0x0c, 0x7f,
0x62, 0x8b, 0x40, 0x46, 0xc7, 0x4b, 0xe0, 0x0e,
0xeb, 0x16, 0xe8, 0xad, 0xcf, 0xcd, 0x39, 0x53,
0x6a, 0x27, 0x35, 0x93, 0xd4, 0x4e, 0x48, 0xc3,
0x2b, 0x79, 0x54, 0x28, 0x09, 0x78, 0x0f, 0x21,
0x90, 0x87, 0x14, 0x2a, 0xa9, 0x9c, 0xd6, 0x74,
0xb4, 0x7c, 0xde, 0xed, 0xb1, 0x86, 0x76, 0xa4,
0x98, 0xe2, 0x96, 0x8f, 0x02, 0x32, 0x1c, 0xc1,
0x33, 0xee, 0xef, 0x81, 0xfd, 0x30, 0x5c, 0x13,
0x9d, 0x29, 0x17, 0xc4, 0x11, 0x44, 0x8c, 0x80,
0xf3, 0x73, 0x42, 0x1e, 0x1d, 0xb5, 0xf0, 0x12,
0xd1, 0x5b, 0x41, 0xa2, 0xd7, 0x2c, 0xe9, 0xd5,
0x59, 0xcb, 0x50, 0xa8, 0xdc, 0xfc, 0xf2, 0x56,
0x72, 0xa6, 0x65, 0x2f, 0x9f, 0x9b, 0x3d, 0xba,
0x7d, 0xc2, 0x45, 0x82, 0xa7, 0x57, 0xb6, 0xa3,
0x7a, 0x75, 0x4f, 0xae, 0x3f, 0x37, 0x6d, 0x47,
0x61, 0xbe, 0xab, 0xd3, 0x5f, 0xb0, 0x58, 0xaf,
0xca, 0x5e, 0xfa, 0x85, 0xe4, 0x4d, 0x8a, 0x05,
0xfb, 0x60, 0xb7, 0x7b, 0xb8, 0x26, 0x4a, 0x67,
0xc6, 0x1a, 0xf8, 0x69, 0x25, 0xb3, 0xdb, 0xbd,
0x66, 0xdd, 0xf1, 0xd2, 0xdf, 0x03, 0x8d, 0x34,
0xd9, 0x92, 0x0d, 0x63, 0x55, 0xaa, 0x49, 0xec,
0xbc, 0x95, 0x3c, 0x84, 0x0b, 0xf5, 0xe6, 0xe7,
0xe5, 0xac, 0x7e, 0x6e, 0xb9, 0xf9, 0xda, 0x8e,
0x9a, 0xc9, 0x24, 0xe1, 0x0a, 0x15, 0x6b, 0x3a,
0xa0, 0x51, 0xf4, 0xea, 0xb2, 0x97, 0x9e, 0x5d,
0x22, 0x88, 0x94, 0xce, 0x19, 0x01, 0x71, 0x4c,
0xa5, 0xe3, 0xc5, 0x31, 0xbb, 0xcc, 0x1f, 0x2d,
0x3b, 0x52, 0x6f, 0xf6, 0x2e, 0x89, 0xf7, 0xc0,
0x68, 0x1b, 0x64, 0x04, 0x06, 0xbf, 0x83, 0x38}
// expTable provides the anti-log or exponentiation value
// for the equivalent index
expTable = [256]uint8{
0x01, 0xe5, 0x4c, 0xb5, 0xfb, 0x9f, 0xfc, 0x12,
0x03, 0x34, 0xd4, 0xc4, 0x16, 0xba, 0x1f, 0x36,
0x05, 0x5c, 0x67, 0x57, 0x3a, 0xd5, 0x21, 0x5a,
0x0f, 0xe4, 0xa9, 0xf9, 0x4e, 0x64, 0x63, 0xee,
0x11, 0x37, 0xe0, 0x10, 0xd2, 0xac, 0xa5, 0x29,
0x33, 0x59, 0x3b, 0x30, 0x6d, 0xef, 0xf4, 0x7b,
0x55, 0xeb, 0x4d, 0x50, 0xb7, 0x2a, 0x07, 0x8d,
0xff, 0x26, 0xd7, 0xf0, 0xc2, 0x7e, 0x09, 0x8c,
0x1a, 0x6a, 0x62, 0x0b, 0x5d, 0x82, 0x1b, 0x8f,
0x2e, 0xbe, 0xa6, 0x1d, 0xe7, 0x9d, 0x2d, 0x8a,
0x72, 0xd9, 0xf1, 0x27, 0x32, 0xbc, 0x77, 0x85,
0x96, 0x70, 0x08, 0x69, 0x56, 0xdf, 0x99, 0x94,
0xa1, 0x90, 0x18, 0xbb, 0xfa, 0x7a, 0xb0, 0xa7,
0xf8, 0xab, 0x28, 0xd6, 0x15, 0x8e, 0xcb, 0xf2,
0x13, 0xe6, 0x78, 0x61, 0x3f, 0x89, 0x46, 0x0d,
0x35, 0x31, 0x88, 0xa3, 0x41, 0x80, 0xca, 0x17,
0x5f, 0x53, 0x83, 0xfe, 0xc3, 0x9b, 0x45, 0x39,
0xe1, 0xf5, 0x9e, 0x19, 0x5e, 0xb6, 0xcf, 0x4b,
0x38, 0x04, 0xb9, 0x2b, 0xe2, 0xc1, 0x4a, 0xdd,
0x48, 0x0c, 0xd0, 0x7d, 0x3d, 0x58, 0xde, 0x7c,
0xd8, 0x14, 0x6b, 0x87, 0x47, 0xe8, 0x79, 0x84,
0x73, 0x3c, 0xbd, 0x92, 0xc9, 0x23, 0x8b, 0x97,
0x95, 0x44, 0xdc, 0xad, 0x40, 0x65, 0x86, 0xa2,
0xa4, 0xcc, 0x7f, 0xec, 0xc0, 0xaf, 0x91, 0xfd,
0xf7, 0x4f, 0x81, 0x2f, 0x5b, 0xea, 0xa8, 0x1c,
0x02, 0xd1, 0x98, 0x71, 0xed, 0x25, 0xe3, 0x24,
0x06, 0x68, 0xb3, 0x93, 0x2c, 0x6f, 0x3e, 0x6c,
0x0a, 0xb8, 0xce, 0xae, 0x74, 0xb1, 0x42, 0xb4,
0x1e, 0xd3, 0x49, 0xe9, 0x9c, 0xc8, 0xc6, 0xc7,
0x22, 0x6e, 0xdb, 0x20, 0xbf, 0x43, 0x51, 0x52,
0x66, 0xb2, 0x76, 0x60, 0xda, 0xc5, 0xf3, 0xf6,
0xaa, 0xcd, 0x9a, 0xa0, 0x75, 0x54, 0x0e, 0x01}
)