-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCTC.py
133 lines (106 loc) · 4.33 KB
/
CTC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import pdb
import math
#parser.add_argument('--batch-size', type=int, default=64, metavar='N',
# help='input batch size for training (default: 64)')
#args = parser.parse_args()
# See http://pytorch.org/tutorials/beginner/examples_autograd/two_layer_net_custom_function.html
class CTC(torch.autograd.Function):
def forward(self, y_pred, seq):
# y_pred = nxm, where n = number of labels and m = no. of time frames
# seq = sequence of labels
# blank = position of blank
# yi_pred is a Variable
# seq is a variable
y_pred = y_pred.numpy()
seq = seq.numpy()
#pdb.set_trace()
blank = 0
L = seq.shape[0]
numDigits = y_pred.shape[0]
L_with_blanks = 2*L + 1
T = y_pred.shape[1]
alphas = np.zeros((L_with_blanks,T))
# Initialize alphas
alphas[0,0] = y_pred[blank, 0]
alphas[1,0] = y_pred[seq[0], 0]
total_alpha = np.sum(alphas[:,0])
alphas[:,0] = alphas[:,0]/total_alpha
llForward = np.log(total_alpha)
#Forward Pass
for t in xrange(1,T):
start = max(0, L_with_blanks-2*(T-t))
end = min(2*t+2, L_with_blanks)
for s in xrange(start, L_with_blanks):
l = (s-1)/2
#blank
if s%2 == 0:
if s == 0:
alphas[s,t] = alphas[s, t-1]*y_pred[blank,t]
else:
alphas[s,t] = (alphas[s,t-1]+alphas[s-1,t-1])*y_pred[blank,t]
#same label twice
elif s == 1 or seq[l] == seq[l-1]:
alphas[s,t] = (alphas[s,t-1] + alphas[s-1,t-1])*y_pred[seq[l],t]
else:
alphas[s,t] = (alphas[s,t-1] + alphas[s-1,t-1] + alphas[s-2,t-1])*y_pred[seq[l],t]
c = np.sum(alphas[start:end,t])
alphas[start:end,t] = alphas[start:end,t] / c
llForward += np.log(c)
return -llForward, alphas
def backward(self, alphas, y_pred, seq):
y_pred = y_pred.numpy()
seq = seq.numpy()
alphas = alphas.numpy()
blank = 0
L = seq.shape[0]
numDigits = y_pred.shape[0]
L_with_blanks = 2*L + 1
T = y_pred.shape[1]
ab = np.empty((L_with_blanks,T))
betas = np.zeros((L_with_blanks,T))
grad = np.zeros((numDigits,T))
grad_v = grad
betas[-1,-1] = y_pred[blank,-1]
betas[-2,-1] = y_pred[seq[-1],-1]
c = np.sum(betas[:,-1])
betas[:,-1] = betas[:,-1]/c
llBackward = np.log(c)
for t in xrange(T-2,-1,-1):
start = max(0, L_with_blanks-2*(T-t))
end = min(2*t+2, L_with_blanks)
for s in xrange(end-1,-1,-1):
l = (s-1)/2
# blank
if s%2 == 0:
if s == L_with_blanks-1:
betas[s,t] = betas[s,t+1] * y_pred[blank,t]
else:
betas[s,t] = (betas[s,t+1] + betas[s+1,t+1]) * y_pred[blank,t]
# same label twice
elif s == L_with_blanks-2 or seq[l] == seq[l+1]:
betas[s,t] = (betas[s,t+1] + betas[s+1,t+1]) * y_pred[seq[l],t]
else:
betas[s,t] = (betas[s,t+1] + betas[s+1,t+1] + betas[s+2,t+1])* y_pred[seq[l],t]
c = np.sum(betas[start:end,t])
betas[start:end,t] = betas[start:end,t] / c
llBackward += np.log(c)
grad = np.zeros(y_pred.shape)
ab = alphas*betas
for s in xrange(L):
# blank
if s%2 == 0:
grad[blank,:] += ab[s,:]
ab[s,:] = ab[s,:]/y_pred[blank,:]
else:
grad[seq[(s-1)/2],:] += ab[s,:]
ab[s,:] = ab[s,:]/(y_pred[seq[(s-1)/2],:])
absum = np.sum(ab,axis=0)
grad = y_pred - grad / (y_pred * absum)
return grad