-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_noniid.py
544 lines (479 loc) · 25.3 KB
/
main_noniid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
'''
Code is adapted from the following link:
https://github.com/uiuc-federated-learning/ml-fault-injector/blob/master/federated.py &
https://github.com/Xtra-Computing/NIID-Bench/blob/5371adbff98156793a413c7658923673b4aef7d7/experiments.py
'''
import argparse
import copy
import json
import os
import time
import copy
import random
import numpy as np
import pandas as pd
import torch
from sklearn.metrics import roc_auc_score
from torchvision import datasets, transforms
from torch import nn
from tqdm import tqdm
from imgaug import augmenters as iaa
import imgaug as ia
from PIL import Image
from noniid_utils import *
from models.noniid_models import *
from torch.utils.data import SubsetRandomSampler, WeightedRandomSampler
from models.resnet import ResNetClassifier, ResNetOrig
from models.amazon import AmazonMLP, AmazonClassifier, AmazonNN
from models.cnn import CNN
from utils import constants
from utils.data_sampler import get_subset_indices, get_train_valid_indices
from utils.utils import deterministic
from torch.multiprocessing import Pool
def set_device():
global device
device = torch.device(0 if torch.cuda.is_available() else "cpu")
def init_nets(net_configs, dropout_p, n_parties, args):
nets = {net_i: None for net_i in range(n_parties)}
if args.dataset in {'mnist', 'cifar10', 'svhn', 'fmnist'}:
n_classes = 10
elif args.dataset == 'celeba':
n_classes = 2
elif args.dataset == 'cifar100':
n_classes = 100
elif args.dataset == 'tinyimagenet':
n_classes = 200
elif args.dataset == 'femnist':
n_classes = 62
elif args.dataset == 'emnist':
n_classes = 47
elif args.dataset in {'a9a', 'covtype', 'rcv1', 'SUSY'}:
n_classes = 2
if args.use_projection_head:
add = ""
if "mnist" in args.dataset and args.model == "simple-cnn":
add = "-mnist"
for net_i in range(n_parties):
net = ModelFedCon(args.model+add, args.out_dim, n_classes, net_configs)
nets[net_i] = net
else:
if args.alg == 'moon':
add = ""
if "mnist" in args.dataset and args.model == "simple-cnn":
add = "-mnist"
for net_i in range(n_parties):
net = ModelFedCon_noheader(args.model+add, args.out_dim, n_classes, net_configs)
nets[net_i] = net
else:
for net_i in range(n_parties):
if args.dataset == "generated":
net = PerceptronModel()
elif args.model == "mlp":
if args.dataset == 'covtype':
input_size = 54
output_size = 2
hidden_sizes = [32,16,8]
elif args.dataset == 'a9a':
input_size = 123
output_size = 2
hidden_sizes = [32,16,8]
elif args.dataset == 'rcv1':
input_size = 47236
output_size = 2
hidden_sizes = [32,16,8]
elif args.dataset == 'SUSY':
input_size = 18
output_size = 2
hidden_sizes = [16,8]
net = FcNet(input_size, hidden_sizes, output_size, dropout_p)
elif args.model == "vgg":
net = vgg11()
elif args.model == "simple-cnn":
if args.dataset in ("cifar10", "cinic10", "svhn"):
net = SimpleCNN(input_dim=(16 * 5 * 5), hidden_dims=[120, 84], output_dim=10)
elif args.dataset in ("mnist", 'femnist', 'fmnist'):
net = SimpleCNNMNIST(input_dim=(16 * 4 * 4), hidden_dims=[120, 84], output_dim=10)
elif args.dataset == 'celeba':
net = SimpleCNN(input_dim=(16 * 5 * 5), hidden_dims=[120, 84], output_dim=2)
elif args.model == "vgg-9":
if args.dataset in ("mnist", 'femnist'):
net = ModerateCNNMNIST()
elif args.dataset in ("cifar10", "cinic10", "svhn"):
# print("in moderate cnn")
net = ModerateCNN()
elif args.dataset == 'celeba':
net = ModerateCNN(output_dim=2)
elif args.model == "resnet":
if args.pretrained:
net = ResNetClassifier(num_classes=n_classes)
else:
net = ResNetClassifier(num_classes=n_classes, pretrained=False)
elif args.model == "vgg16":
net = vgg16()
else:
print("not supported yet")
exit(1)
nets[net_i] = net
return nets
def train(args, da_phase, model, criterion: torch.nn.Module, train_dl):
global device
model.to(device)
old_model = copy.deepcopy(model)
optimizer = torch.optim.Adam(model.parameters(), lr=args.source_lr if da_phase=='source' else args.target_lr)
model.train()
num_epochs = args.num_source_epochs if da_phase == 'source' else args.num_target_epochs
for epoch in range(num_epochs):
running_loss = 0.0
running_corrects = 0
y_true_list = list()
y_pred_list = list()
with tqdm(train_dl, unit="batch") as tepoch:
for (imgs, labels) in tepoch:
tepoch.set_description(f"Epoch {epoch}")
inputs = imgs.to(device)
labels = labels.long().to(device)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)
tepoch.set_postfix(loss=loss.item())
for i in range(len(outputs)):
y_true_list.append(labels[i].cpu().data.tolist())
# Backward pass
loss.backward()
optimizer.step()
# Keep track of performance metrics (loss is mean-reduced)
running_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs.data, 1)
running_corrects += torch.sum(preds == labels.data).item()
epoch_loss = running_loss / len(y_true_list)
epoch_acc = float(running_corrects) / len(y_true_list)
# Keep track of current training loss and accuracy
final_train_loss = epoch_loss
final_train_acc = epoch_acc
if da_phase == 'source' and random.random() < args.flip:
old_model_dict = old_model.state_dict()
new_model_dict = model.state_dict()
new_w = copy.deepcopy(old_model_dict)
for key in new_w.keys():
new_w[key] = torch.zeros_like(new_w[key]).float()
new_w[key] = old_model_dict[key] - (new_model_dict[key] - old_model_dict[key])
model.load_state_dict(new_w)
return model, (final_train_loss, final_train_acc, None)
def test(args: argparse.Namespace, model: torch.nn.Module,
criterion: torch.nn.Module, test_loader: torch.utils.data.DataLoader):
global device
model.to(device)
model.eval()
trial_results = dict()
running_loss = 0.0
running_corrects = 0
y_true_list = list()
y_pred_list = list()
# Iterate over dataloader
for (imgs, labels) in test_loader:
inputs = imgs.to(device)
labels = labels.long().to(device)
# Forward pass
with torch.no_grad():
outputs = model(inputs)
loss = criterion(outputs, labels)
for i in range(len(outputs)):
y_true_list.append(labels[i].cpu().data.tolist())
# Keep track of performance metrics
running_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs.data, 1)
running_corrects += torch.sum(preds == labels.data).item()
test_loss = running_loss / len(y_true_list)
test_acc = float(running_corrects) / len(y_true_list)
print('Test Loss: {:.4f} Acc: {:.4f}'.format(
test_loss, test_acc), flush=True)
print(flush=True)
return (test_loss, test_acc, None)
def average_weights(w, alpha):
"""
Returns the average of the weights.
"""
w_avg = copy.deepcopy(w[0])
for key in w_avg.keys():
w_avg[key] = torch.zeros_like(w_avg[key]).float()
for i in range(len(w)):
w_avg[key] += w[i][key] * alpha[i]
return w_avg
def update_dict(old_model_dict, new_model_dict, alpha):
new_w = copy.deepcopy(old_model_dict)
for key in new_w.keys():
new_w[key] = torch.zeros_like(new_w[key]).float()
new_w[key] = old_model_dict[key] * alpha + new_model_dict[key] * (1-alpha)
return new_w
def update_global(args, local_models_dict, old_global_model_dict, finetune_global_model_dict, clients_size, clients_size_frac, cur_epoch):
ret_dict = copy.deepcopy(old_global_model_dict)
b = args.proj_w
cos = torch.nn.CosineSimilarity()
for key in ret_dict.keys():
if ret_dict[key].shape != torch.Size([]):
global_grad = finetune_global_model_dict[key] - old_global_model_dict[key]
for idx, local_dict in enumerate(local_models_dict):
local_grad = local_dict[key] - old_global_model_dict[key]
cur_sim = cos(global_grad.reshape(1,-1), local_grad.reshape(1,-1))
if cur_sim > 0:
ret_dict[key] = ret_dict[key] + b * (args.target_lr / args.source_lr) * ((args.n_target_samples/args.target_batch_size)/(clients_size[idx]/args.source_batch_size)) * clients_size_frac[idx] * cur_sim * local_grad
ret_dict[key] = ret_dict[key] + (1-b) * global_grad
else:
ret_dict[key] = old_global_model_dict[key]
return ret_dict
def update_global_reverse(args, local_models_dict, old_global_model_dict, finetune_global_model_dict, clients_size, clients_size_frac, cur_epoch):
ret_dict = copy.deepcopy(old_global_model_dict)
b = args.proj_w
count = 0
cos = torch.nn.CosineSimilarity()
for key in ret_dict.keys():
if ret_dict[key].shape != torch.Size([]):
global_grad = finetune_global_model_dict[key] - old_global_model_dict[key]
for idx, local_dict in enumerate(local_models_dict):
local_grad = local_dict[key] - old_global_model_dict[key]
cur_sim = cos(global_grad.reshape(1,-1), local_grad.reshape(1,-1))
if cur_sim > 0:
ret_dict[key] = ret_dict[key] + b * clients_size_frac[idx] * cur_sim * global_grad
else:
count += 1
ret_dict[key] = ret_dict[key] + (1-b) * global_grad
else:
ret_dict[key] = old_global_model_dict[key]
print(f'negative times {count}')
return ret_dict
def update_global_convex(args, local_models_dict, old_global_model_dict, finetune_global_model_dict, clients_size, clients_size_frac, cur_epoch):
ret_dict = copy.deepcopy(old_global_model_dict)
b = args.proj_w
cos = torch.nn.CosineSimilarity()
for key in ret_dict.keys():
if ret_dict[key].shape != torch.Size([]):
global_grad = finetune_global_model_dict[key] - old_global_model_dict[key]
for idx, local_dict in enumerate(local_models_dict):
local_grad = local_dict[key] - old_global_model_dict[key]
ret_dict[key] = ret_dict[key] + b * clients_size_frac[idx] * local_grad
ret_dict[key] = ret_dict[key] + (1-b) * global_grad
else:
ret_dict[key] = old_global_model_dict[key]
return ret_dict
# get the grad updates
def get_model_updates(init_model, new_model):
ret_updates = []
init = get_param_list(init_model)
new = get_param_list(new_model)
return (new - init).reshape(1, -1)
def get_param_list(model):
m_dict = model.state_dict()
param = []
for key in m_dict.keys():
param.append(np.linalg.norm(m_dict[key]))
return np.array(param)
if __name__ == '__main__':
set_device()
parser = argparse.ArgumentParser()
parser.add_argument('--exp_dir', type=str, default='fl_noniid')
parser.add_argument('--iter_idx', type=str, default='0')
parser.add_argument('--resnet', type=str, default='resnet18')
parser.add_argument('--load_trained_model', action='store_true')
parser.add_argument('--model_path', type=str, default=None)
parser.add_argument('--num_source_epochs', type=int, default=1)
parser.add_argument('--num_target_epochs', type=int, default=1)
parser.add_argument('--num_global_epochs', type=int, default=50)
parser.add_argument('--source_lr', type=float, default=0.01)
parser.add_argument('--target_lr', type=float, default=0.005)
parser.add_argument('--source_batch_size', type=int, default=64)
parser.add_argument('--target_batch_size', type=int, default=16)
parser.add_argument('--no_drop_last', action='store_false')
parser.add_argument('--train_seed', type=int, default=8)
parser.add_argument('--data_sampler_seed', type=int, default=8)
parser.add_argument('--n_target_samples', type=int, default=100)
parser.add_argument('--valid_fraction', type=float, default=None)
parser.add_argument('--early_stop', action='store_true')
parser.add_argument('--patience', type=int, default=30)
parser.add_argument('--freeze', action='store_true')
parser.add_argument('--hidden_size', type=int, default=128)
parser.add_argument('--data_aug_times', type=int, default=1)
parser.add_argument('--use_sim', action='store_true')
parser.add_argument('--finetune', action='store_true')
parser.add_argument('--dataset', type=str, default='mnist')
parser.add_argument('--datadir', type=str, default='/shared/rsaas/enyij2/msda/noniid')
parser.add_argument('--n_parties', type=int, default=5, help='number of workers in a distributed cluster')
parser.add_argument('--partition', type=str, default='homo', help='the data partitioning strategy')
parser.add_argument('--model', type=str, default='simple-cnn', help='neural network used in training')
parser.add_argument('--logdir', type=str, required=False, default="./logs/", help='Log directory path')
parser.add_argument('--modeldir', type=str, required=False, default="./models/", help='Model directory path')
parser.add_argument('--beta', type=float, default=0.5, help='The parameter for the dirichlet distribution for data partitioning')
parser.add_argument('--dropout_p', type=float, required=False, default=0.0, help="Dropout probability. Default=0.0")
parser.add_argument('--net_config', type=lambda x: list(map(int, x.split(', '))))
parser.add_argument('--noise', type=float, default=0, help='how much noise we add to some party')
parser.add_argument('--use_projection_head', type=bool, default=False, help='whether add an additional header to model or not (see MOON)')
parser.add_argument('--alg', type=str, default='fedavg',
help='fl algorithms: fedavg/fedprox/scaffold/fednova/moon')
parser.add_argument('--proj_w', type=float, required=False, default=0.5, help='how much weight for leveraging info from the source domains')
parser.add_argument('--flip', type=float, required=False, default=0, help='whether to flip the gradient with some probability')
parser.add_argument('--agg_before_gp', action='store_true', help='whether to avg the weights before gp')
parser.add_argument('--convex_agg', action='store_true', help='whether to do convex combination with fedavg')
parser.add_argument('--reverse_gp', action='store_true', help='whether to do reverse gradient projection')
parser.add_argument('--pretrained', action='store_true', help='whether to pretrain the original model')
args = parser.parse_args()
timestamp = time.strftime("%Y-%m-%d-%H%M")
exp_dir = os.path.join('experiments', args.exp_dir)
os.makedirs(exp_dir, exist_ok=True)
with open(os.path.join(exp_dir, f'args_{args.iter_idx}.json'), 'w') as f:
json.dump(args.__dict__, f, indent=4)
deterministic(args.train_seed)
X_train, y_train, X_test, y_test, net_dataidx_map, traindata_cls_counts = partition_data(
args.dataset, args.datadir, args.logdir, args.partition, args.n_parties, beta=args.beta)
n_classes = len(np.unique(y_train))
# Initialize the server & clients' models
local_models = init_nets(args.net_config, args.dropout_p, args.n_parties, args)
global_model = local_models[args.n_parties-1]
del local_models[args.n_parties-1]
global_model.to(device)
# Initialize the datasets & data loader
clients_dls = {'train':[], 'test':[]}
server_dls = {'train':[], 'test':[]}
# construct clients' dataloaders
for net_id in range(args.n_parties): # 0-9
if net_id < args.n_parties - 1:
dataidxs = net_dataidx_map[net_id]
train_dl, test_dl, _, _ = get_dataloader(args.dataset, args.datadir, args.source_batch_size, 32, dataidxs, 0)
clients_dls['train'].append(train_dl)
clients_dls['test'].append(test_dl)
else:
dataidxs = net_dataidx_map[net_id]
if args.dataset == 'cifar10':
if args.partition == 'homo':
train_dl, test_dl, train_ds, test_ds = get_dataloader(args.dataset, args.datadir, args.target_batch_size, 32, None, args.noise)
randperm = torch.randperm(len(train_ds))
indices = randperm[:int(len(train_ds)*0.075)]
args.n_target_samples = int(len(train_ds)*0.075)
rest_indices = randperm[int(len(train_ds)*0.075):int(len(train_ds)*0.5)]
train_dl, test_dl, train_ds, test_ds = get_dataloader(args.dataset, args.datadir, args.target_batch_size, 32, dataidxs, args.noise)
randperm = torch.randperm(len(train_ds))
indices = randperm[:int(len(train_ds)*0.1)]
args.n_target_samples = int(len(train_ds)*0.1)
rest_indices = randperm[int(len(train_ds)*0.1):]
else:
train_dl, test_dl, train_ds, test_ds = get_dataloader(args.dataset, args.datadir, args.target_batch_size, 32, dataidxs, args.noise)
randperm = torch.randperm(len(train_ds))
if args.partition == 'homo':
indices = randperm[:args.n_target_samples]
rest_indices = randperm[args.n_target_samples:]
else:
indices = randperm[:int(len(train_ds)*0.15)]
args.n_target_samples = int(len(train_ds)*0.15)
rest_indices = randperm[int(len(train_ds)*0.15):]
server_dls['train'].append(train_dl)
cur_sampler = SubsetRandomSampler(indices)
cur_sampler_rest = SubsetRandomSampler(rest_indices)
perturb_dl = torch.utils.data.DataLoader(train_ds, shuffle=False, batch_size=args.target_batch_size, sampler=cur_sampler)
unlabeled_dl = torch.utils.data.DataLoader(train_ds, shuffle=False, batch_size=args.source_batch_size, sampler=cur_sampler_rest)
if args.partition == 'homo':
server_dls['test'].append(test_dl)
else:
server_dls['test'].append(unlabeled_dl)
# initialize datalaoders, models, optimizer, criterions
num_clients = args.n_parties - 1
dict_client = dict()
for i in range(num_clients):
dict_client.update({i: []})
clients_size = [len(clients_dls['train'][i])*args.source_batch_size for i in range(num_clients)]
clients_size_frac = np.array(clients_size) / sum(clients_size)
print(clients_size, clients_size_frac)
clients_grads = [None] * num_clients
cos_sim = [None] * num_clients
global_model_dict = global_model.state_dict()
criterion = torch.nn.CrossEntropyLoss().to(device)
clients_results = dict()
clients_results['train'] = dict()
clients_results['test_s'] = dict()
clients_results['test_t'] = dict()
clients_results['train']['loss'] = copy.deepcopy(dict_client)
clients_results['train']['acc'] = copy.deepcopy(dict_client)
clients_results['train']['auc'] = copy.deepcopy(dict_client)
clients_results['test_s']['loss'] = copy.deepcopy(dict_client)
clients_results['test_s']['acc'] = copy.deepcopy(dict_client)
clients_results['test_s']['auc'] = copy.deepcopy(dict_client)
clients_results['test_t']['loss'] = copy.deepcopy(dict_client)
clients_results['test_t']['acc'] = copy.deepcopy(dict_client)
clients_results['test_t']['auc'] = copy.deepcopy(dict_client)
server_results = dict()
server_results['train'] = dict()
server_results['test'] = dict()
server_results['train']['loss'] = []
server_results['train']['acc'] = []
server_results['train']['auc'] = []
server_results['test']['loss'] = []
server_results['test']['acc'] = []
server_results['test']['auc'] = []
# do fedavg for 2 epochs, to have a good initialization
if args.load_trained_model:
global_model.load_state_dict(torch.load(args.model_path))
else:
for _ in range(2):
for idx in range(num_clients):
local_models[idx].load_state_dict(global_model_dict)
local_models[idx], (loss, acc, auc) = train(args, 'source', copy.deepcopy(local_models[idx]), criterion, clients_dls['train'][idx])
global_model_dict = average_weights([model.state_dict() for model in local_models.values()], clients_size_frac)
global_model.load_state_dict(global_model_dict)
for i in range(args.num_global_epochs):
# training local models
if args.proj_w > 0:
for idx in range(num_clients):
local_models[idx].load_state_dict(global_model_dict)
local_models[idx], (loss, acc, auc) = train(args, 'source', copy.deepcopy(local_models[idx]), criterion, clients_dls['train'][idx])
clients_results['train']['loss'][idx].append(loss)
clients_results['train']['acc'][idx].append(acc)
clients_results['train']['auc'][idx].append(auc)
# averaging the weights
if args.use_sim:
if args.agg_before_gp:
global_model_dict = average_weights([model.state_dict() for model in local_models.values()], clients_size_frac)
global_model.load_state_dict(global_model_dict)
new_model, (loss, acc, auc) = train(args, 'target', copy.deepcopy(global_model), criterion, perturb_dl)
server_results['train']['loss'].append(loss)
server_results['train']['acc'].append(acc)
server_results['train']['auc'].append(auc)
if args.proj_w > 0:
if args.reverse_gp:
global_model_dict = update_global_reverse(args, [model.state_dict() for model in local_models.values()], global_model.state_dict(), new_model.state_dict(), clients_size, clients_size_frac, i)
else:
global_model_dict = update_global(args, [model.state_dict() for model in local_models.values()], global_model.state_dict(), new_model.state_dict(), clients_size, clients_size_frac, i)
global_model.load_state_dict(global_model_dict)
else:
global_model = copy.deepcopy(new_model)
elif args.convex_agg:
new_model, (loss, acc, auc) = train(args, 'target', copy.deepcopy(global_model), criterion, perturb_dl)
server_results['train']['loss'].append(loss)
server_results['train']['acc'].append(acc)
server_results['train']['auc'].append(auc)
if args.proj_w > 0:
global_model_dict = update_global_convex(args, [model.state_dict() for model in local_models.values()], global_model.state_dict(), new_model.state_dict(), clients_size, clients_size_frac, i)
global_model.load_state_dict(global_model_dict)
else:
global_model = copy.deepcopy(new_model)
else:
global_model_dict = average_weights([model.state_dict() for model in local_models.values()], clients_size_frac)
global_model.load_state_dict(global_model_dict)
if args.finetune:
global_model, (loss, acc, auc) = train(args, 'target', global_model, criterion, perturb_dl)
server_results['train']['loss'].append(loss)
server_results['train']['acc'].append(acc)
server_results['train']['auc'].append(auc)
global_model_dict = global_model.state_dict()
print('testing global model on its target domain')
(loss, acc, auc) = test(args, global_model, criterion, server_dls['test'][0])
server_results['test']['loss'].append(loss)
server_results['test']['acc'].append(acc)
server_results['test']['auc'].append(auc)
with open(os.path.join(exp_dir,(f'clients_results_{args.iter_idx}.json')), 'w') as fp:
json.dump(clients_results, fp, indent=4)
fp.close()
with open(os.path.join(exp_dir,(f'server_results_{args.iter_idx}.json')), 'w') as fp:
json.dump(server_results, fp, indent=4)
fp.close()
torch.save(global_model.state_dict(),os.path.join(exp_dir,f'server_checkpoint_{args.iter_idx}.pt'))
for idx in local_models:
torch.save(local_models[idx].state_dict(),os.path.join(exp_dir,f'client_{idx}_checkpoint_{args.iter_idx}.pt'))