-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_domain_bed_auto_beta.py
executable file
·585 lines (490 loc) · 24.9 KB
/
main_domain_bed_auto_beta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import argparse
import collections
import json
import os
import random
import sys
import time
import uuid
import copy
import gc
import numpy as np
import PIL
import torch
import torchvision
import torch.utils.data
from tqdm import tqdm
from domainbed import datasets
from domainbed import hparams_registry
from domainbed import algorithms
from models.domainbed_net import *
from domainbed.lib import misc
from domainbed.lib.fast_data_loader import InfiniteDataLoader, FastDataLoader
from empirical_metric import empirical_metrics_batch
def train_source(args, hparams, da_phase, model, criterion: torch.nn.Module, train_dl):
global device
model.to(device)
lr = hparams["lr"] if da_phase=='source' else hparams["lr"] * args.lr_ratio
optimizer = torch.optim.Adam(model.parameters(), lr= lr) #, weight_decay=lr*0.1)
grads_all_epochs = []
model.train()
num_epochs = args.num_source_epochs if da_phase == 'source' else args.num_target_epochs
for epoch in range(num_epochs):
running_loss = 0.0
running_corrects = 0
y_true_list = list()
num_batches = 0
model_init = copy.deepcopy(model)
with tqdm(train_dl, unit="batch") as tepoch:
for (imgs, labels) in tepoch:
num_batches += 1
tepoch.set_description(f"Epoch {epoch}")
inputs = imgs.to(device)
labels = labels.long().to(device)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)
tepoch.set_postfix(loss=loss.item())
for i in range(len(outputs)):
y_true_list.append(labels[i].cpu().data.tolist())
# Backward pass
loss.backward()
optimizer.step()
# Keep track of performance metrics (loss is mean-reduced)
running_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs.data, 1)
running_corrects += torch.sum(preds == labels.data).item()
epoch_loss = running_loss / len(y_true_list)
epoch_acc = float(running_corrects) / len(y_true_list)
grads_all_epochs.append(get_model_updates(model_init, model).detach().cpu() / num_batches)
grads_all_epochs = torch.mean(torch.stack(grads_all_epochs),dim=0)
# Keep track of current training loss and accuracy
final_train_loss = epoch_loss
final_train_acc = epoch_acc
return model, grads_all_epochs, (final_train_loss, final_train_acc, None)
def train_target(args, hparams, da_phase, model, criterion: torch.nn.Module, train_dl):
global device
model.to(device)
lr = hparams["lr"] if da_phase=='source' else hparams["lr"] * args.lr_ratio
optimizer = torch.optim.Adam(model.parameters(), lr= lr) #, weight_decay=lr*0.1)
grads_all_epochs = []
model.train()
num_epochs = args.num_source_epochs if da_phase == 'source' else args.num_target_epochs
for epoch in range(num_epochs):
running_loss = 0.0
running_corrects = 0
y_true_list = list()
grads = [] # length N - number of batches
with tqdm(train_dl, unit="batch") as tepoch:
for (imgs, labels) in tepoch:
tepoch.set_description(f"Epoch {epoch}")
inputs = imgs.to(device)
labels = labels.long().to(device)
model_init = copy.deepcopy(model)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)
tepoch.set_postfix(loss=loss.item())
for i in range(len(outputs)):
y_true_list.append(labels[i].cpu().data.tolist())
# Backward pass
loss.backward()
optimizer.step()
cur_grad = []
if args.use_original_grad:
for _, param in model.named_parameters():
cur_grad.append(param.grad.detach().clone().flatten().cpu())
cur_grad = torch.cat(cur_grad)
grads.append(cur_grad)
else:
# we use the model update as the grad
cur_grad = get_model_updates(model_init, model).cpu()
grads.append(cur_grad)
# Keep track of performance metrics (loss is mean-reduced)
running_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs.data, 1)
running_corrects += torch.sum(preds == labels.data).item()
gc.collect()
torch.cuda.empty_cache()
epoch_loss = running_loss / len(y_true_list)
epoch_acc = float(running_corrects) / len(y_true_list)
grads = torch.stack(grads) # [Number of batches, m]
grads_all_epochs.append(grads)
grads_all_epochs = torch.mean(torch.stack(grads_all_epochs),dim=0)
if not args.use_original_grad:
grads_all_epochs = grads_all_epochs * args.lr_ratio
if da_phase == 'source':
grads_all_epochs = torch.mean(grads_all_epochs, dim=0) # get average grad across batches
# Keep track of current training loss and accuracy
final_train_loss = epoch_loss
final_train_acc = epoch_acc
return model, grads_all_epochs, (final_train_loss, final_train_acc, None)
def test(args: argparse.Namespace, model: torch.nn.Module,
criterion: torch.nn.Module, test_loader: torch.utils.data.DataLoader):
global device
model.to(device)
model.eval()
trial_results = dict()
running_loss = 0.0
running_corrects = 0
y_true_list = list()
y_pred_list = list()
# Iterate over dataloader
for (imgs, labels) in test_loader:
inputs = imgs.to(device)
labels = labels.long().to(device)
# Forward pass
with torch.no_grad():
outputs = model(inputs)
loss = criterion(outputs, labels)
for i in range(len(outputs)):
y_true_list.append(labels[i].cpu().data.tolist())
# Keep track of performance metrics
running_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs.data, 1)
running_corrects += torch.sum(preds == labels.data).item()
test_loss = running_loss / len(y_true_list)
test_acc = float(running_corrects) / len(y_true_list)
print('Test Loss: {:.4f} Acc: {:.4f}'.format(
test_loss, test_acc), flush=True)
print(flush=True)
return (test_loss, test_acc, None)
def average_weights(w, alpha):
"""
Returns the average of the weights.
"""
w_avg = copy.deepcopy(w[0])
for key in w_avg.keys():
w_avg[key] = torch.zeros_like(w_avg[key]).float()
for i in range(len(w)):
w_avg[key] += w[i][key] * alpha[i]
return w_avg
def update_dict(old_model_dict, new_model_dict, alpha):
new_w = copy.deepcopy(old_model_dict)
for key in new_w.keys():
new_w[key] = torch.zeros_like(new_w[key]).float()
new_w[key] = old_model_dict[key] * alpha + new_model_dict[key] * (1-alpha)
return new_w
def update_global(args, hparams, local_models_dict, old_global_model_dict, finetune_global_model_dict, clients_size, clients_size_frac, cur_epoch, beta_GP):
ret_dict = copy.deepcopy(old_global_model_dict)
b = beta_GP
cos = torch.nn.CosineSimilarity()
for key in ret_dict.keys():
if ret_dict[key].shape != torch.Size([]):
global_grad = finetune_global_model_dict[key] - old_global_model_dict[key]
for idx, local_dict in enumerate(local_models_dict):
local_grad = local_dict[key] - old_global_model_dict[key]
cur_sim = cos(global_grad.reshape(1,-1), local_grad.reshape(1,-1))
if cur_sim > 0:
ret_dict[key] = ret_dict[key] + beta_GP[idx] * args.lr_ratio * (args.num_target_epochs / args.num_source_epochs) * ((args.n_target_samples/args.target_batch_size)/(clients_size[idx]/hparams['batch_size'])) * clients_size_frac[idx] * cur_sim * local_grad
ret_dict[key] = ret_dict[key] + (1-beta_GP[idx]) * global_grad * clients_size_frac[idx]
else:
ret_dict[key] = torch.zeros_like(old_global_model_dict[key]).float()
for idx, local_dict in enumerate(local_models_dict):
ret_dict[key] += clients_size_frac[idx] * local_dict[key]
return ret_dict
def update_global_convex(args, local_models_dict, old_global_model_dict, finetune_global_model_dict, clients_size, clients_size_frac, cur_epoch, beta_DA):
ret_dict = copy.deepcopy(old_global_model_dict)
for key in ret_dict.keys():
if ret_dict[key].shape != torch.Size([]):
global_grad = finetune_global_model_dict[key] - old_global_model_dict[key]
for idx, local_dict in enumerate(local_models_dict):
local_grad = local_dict[key] - old_global_model_dict[key]
ret_dict[key] = ret_dict[key] + beta_DA[idx] * clients_size_frac[idx] * local_grad
ret_dict[key] = ret_dict[key] + (1-beta_DA[idx]) * global_grad * clients_size_frac[idx]
else:
ret_dict[key] = torch.zeros_like(old_global_model_dict[key]).float()
for idx, local_dict in enumerate(local_models_dict):
ret_dict[key] += clients_size_frac[idx] * local_dict[key]
return ret_dict
# get the grad updates
def get_model_updates(init_model, new_model):
init = get_param_list(init_model)
new = get_param_list(new_model)
return (new - init)
def get_param_list(model):
m_dict = model.state_dict()
param = []
for key in m_dict.keys():
if m_dict[key].shape != torch.Size([]):
param.append(m_dict[key].detach().clone().flatten())
return torch.cat(param)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MSDA')
# arguments from fedgp
parser.add_argument('--exp_dir', type=str, default='fl_domainbed_auto_new')
parser.add_argument('--iter_idx', type=str, default='0')
parser.add_argument('--load_trained_model', action='store_true')
parser.add_argument('--model_path', type=str, default=None)
parser.add_argument('--lr_ratio', type=float, default=0.2)
parser.add_argument('--num_source_epochs', type=int, default=1)
parser.add_argument('--num_target_epochs', type=int, default=1)
parser.add_argument('--num_global_epochs', type=int, default=50)
parser.add_argument('--target_batch_size', type=int, required=False, default=16)
parser.add_argument('--use_sim', action='store_true')
parser.add_argument('--finetune', action='store_true')
parser.add_argument('--proj_w', type=float, required=False, default=0.5, help='how much weight for leveraging info from the source domains')
parser.add_argument('--convex_agg', action='store_true', help='whether to do convex combination with fedavg')
parser.add_argument('--use_original_grad', action='store_true', help='if true we use the original grad instead of the model updates for computing metrics')
parser.add_argument('--log_metric', action='store_true', help='whether to log the metric contents')
parser.add_argument('--early_stop', action='store_true', help='whether to use validation set for early stopping')
# arguments from domainbed
parser.add_argument('--data_dir', type=str)
parser.add_argument('--dataset', type=str, default="RotatedMNIST")
parser.add_argument('--algorithm', type=str, default="fedgp")
parser.add_argument('--hparams', type=str,
help='JSON-serialized hparams dict')
parser.add_argument('--hparams_seed', type=int, default=0,
help='Seed for random hparams (0 means "default hparams")')
parser.add_argument('--trial_seed', type=int, default=1,
help='Trial number (used for seeding split_dataset and '
'random_hparams).')
parser.add_argument('--seed', type=int, default=0,
help='Seed for everything else')
parser.add_argument('--test_envs', type=int, nargs='+', default=[0]) # which domain to be target domain.
parser.add_argument('--holdout_fraction', type=float, default=0.2)
parser.add_argument('--uda_holdout_fraction', type=float, default=0.15,
help="For domain adaptation, % of test to use unlabeled for training.")
args = parser.parse_args()
if args.hparams_seed == 0:
hparams = hparams_registry.default_hparams(args.algorithm, args.dataset)
else:
hparams = hparams_registry.random_hparams(args.algorithm, args.dataset,
misc.seed_hash(args.hparams_seed, args.trial_seed))
if args.hparams:
hparams.update(json.loads(args.hparams))
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
global device
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
if args.dataset in vars(datasets):
dataset = vars(datasets)[args.dataset](args.data_dir,
args.test_envs, hparams)
else:
raise NotImplementedError
# Split each env into an 'in-split' and an 'out-split'. We'll train on
# each in-split except the test envs, and evaluate on all splits.
# To allow unsupervised domain adaptation experiments, we split each test
# env into 'in-split', 'uda-split' and 'out-split'. The 'in-split' is used
# by collect_results.py to compute classification accuracies. The
# 'out-split' is used by the Oracle model selectino method. The unlabeled
# samples in 'uda-split' are passed to the algorithm at training time if
# args.task == "domain_adaptation". If we are interested in comparing
# domain generalization and domain adaptation results, then domain
# generalization algorithms should create the same 'uda-splits', which will
# be discared at training.
# in-split: training data for each domain
# out-split: testing data for each domain
# uda-split: finetuning data for the target domain
clients_dls = {'train':[], 'test':[]}
server_dls = {'train':[], 'test':[], 'val': []}
clients = []
server = []
for env_i, env in enumerate(dataset):
uda = []
# split training/testing data
out, in_ = misc.split_dataset(env,
int(len(env)*args.holdout_fraction),
misc.seed_hash(args.trial_seed, env_i))
# split finetuning set from testing data
if env_i in args.test_envs:
server = dataset.ENVIRONMENTS[env_i]
uda, in_ = misc.split_dataset(env,
int(len(in_)*args.uda_holdout_fraction),
misc.seed_hash(args.trial_seed, env_i))
out, in_ = misc.split_dataset(in_,
int(len(in_)*args.holdout_fraction),
misc.seed_hash(args.trial_seed, env_i))
args.n_target_samples = len(uda)
print(f"number of target samples: {len(uda)}")
server_dls['train'].append(torch.utils.data.DataLoader(
uda,
num_workers=dataset.N_WORKERS,
batch_size=args.target_batch_size))
server_dls['test'].append(torch.utils.data.DataLoader(
out,
num_workers=dataset.N_WORKERS,
batch_size=64))
else:
clients.append(dataset.ENVIRONMENTS[env_i])
clients_dls['train'].append(torch.utils.data.DataLoader(
in_,
num_workers=dataset.N_WORKERS,
batch_size=hparams['batch_size']))
clients_dls['test'].append(torch.utils.data.DataLoader(
out,
num_workers=dataset.N_WORKERS,
batch_size=64))
exp_dir = os.path.join('experiments', args.exp_dir, args.dataset, server)
os.makedirs(exp_dir, exist_ok=True)
with open(os.path.join(exp_dir, f'args_{args.iter_idx}.json'), 'w') as f:
json.dump(args.__dict__, f, indent=4)
print(f'target:{server}, sources:{clients}')
num_clients = len(clients)
dict_client = dict()
for i in range(num_clients):
dict_client.update({clients[i]: []})
clients_size = [len(clients_dls['train'][i])*hparams['batch_size'] for i in range(num_clients)]
clients_size_frac = np.array(clients_size) / sum(clients_size)
print(clients_size, clients_size_frac)
# intialize models
global_model = domainbedNet(dataset.input_shape, dataset.num_classes,
len(dataset) - len(args.test_envs), hparams)
global_model.to(device)
global_model_dict = global_model.state_dict()
local_models = [domainbedNet(dataset.input_shape, dataset.num_classes,
len(dataset) - len(args.test_envs), hparams) for _ in range(num_clients)]
criterion = torch.nn.CrossEntropyLoss().to(device)
clients_results = dict()
clients_results['train'] = dict()
clients_results['test_s'] = dict()
clients_results['test_t'] = dict()
clients_results['train']['loss'] = copy.deepcopy(dict_client)
clients_results['train']['acc'] = copy.deepcopy(dict_client)
clients_results['train']['auc'] = copy.deepcopy(dict_client)
clients_results['test_s']['loss'] = copy.deepcopy(dict_client)
clients_results['test_s']['acc'] = copy.deepcopy(dict_client)
clients_results['test_s']['auc'] = copy.deepcopy(dict_client)
clients_results['test_t']['loss'] = copy.deepcopy(dict_client)
clients_results['test_t']['acc'] = copy.deepcopy(dict_client)
clients_results['test_t']['auc'] = copy.deepcopy(dict_client)
server_results = dict()
server_results['train'] = dict()
server_results['test'] = dict()
server_results['beta'] = copy.deepcopy(dict_client)
server_results['train']['loss'] = []
server_results['train']['acc'] = []
server_results['train']['auc'] = []
server_results['test']['loss'] = []
server_results['test']['acc'] = []
server_results['test']['auc'] = []
server_results['best_val_test'] = dict()
server_results['best_val_test']['loss'] = None
server_results['best_val_test']['acc'] = None
metric_results = dict()
metric_results['target_var'] = []
metric_results['source_target_var'] = copy.deepcopy(dict_client)
metric_results['projected_norm'] = copy.deepcopy(dict_client)
metric_results['delta'] = copy.deepcopy(dict_client)
patience = 5
best_val_loss = np.inf
best_model_weights = None
epochs_no_improve = 0
# do fedavg for 2 epochs, to have a good initialization
if args.load_trained_model:
global_model.load_state_dict(torch.load(args.model_path))
elif args.proj_w > 0:
if args.dataset == 'TerraIncognita':
num_init = 5
else:
num_init = 2
for _ in range(num_init):
for idx in range(num_clients):
local_models[idx].load_state_dict(global_model_dict)
local_models[idx], _, (loss, acc, auc) = train_source(args, hparams, 'source', copy.deepcopy(local_models[idx]), criterion, clients_dls['train'][idx])
gc.collect()
torch.cuda.empty_cache()
global_model_dict = average_weights([model.state_dict() for model in local_models], clients_size_frac)
global_model.load_state_dict(global_model_dict)
hparams["lr"] = hparams["lr"] * 0.1
for i in range(args.num_global_epochs):
# training local models
source_grads = []
target_grads = None
if args.proj_w > 0:
for idx in range(num_clients):
local_models[idx].load_state_dict(global_model_dict)
local_models[idx], source_grad, (loss, acc, auc) = train_source(args, hparams, 'source', copy.deepcopy(local_models[idx]), criterion, clients_dls['train'][idx])
clients_results['train']['loss'][clients[idx]].append(loss)
clients_results['train']['acc'][clients[idx]].append(acc)
clients_results['train']['auc'][clients[idx]].append(auc)
source_grads.append(source_grad)
gc.collect()
torch.cuda.empty_cache()
# averaging the weights
if args.use_sim:
new_model, target_grads, (loss, acc, auc) = train_target(args, hparams, 'target', copy.deepcopy(global_model), criterion, server_dls['train'][0])
server_results['train']['loss'].append(loss)
server_results['train']['acc'].append(acc)
server_results['train']['auc'].append(auc)
if args.proj_w > 0:
gc.collect()
torch.cuda.empty_cache()
metrics = empirical_metrics_batch(args.target_batch_size, source_grads, target_grads)
if args.log_metric:
metric_results['target_var'].append(metrics.target_var.item())
for i in range(num_clients):
metric_results['source_target_var'][clients[i]].append(metrics.source_target_var[i].item())
metric_results['projected_norm'][clients[i]].append(metrics.projected_grads_norm_square[i].item())
metric_results['delta'][clients[i]].append(metrics.deltas[i])
beta_GP = metrics.return_fedgp_beta()
for idx, beta in enumerate(beta_GP):
server_results['beta'][clients[idx]].append(beta.item())
global_model_dict = update_global(args, hparams, [model.state_dict() for model in local_models], global_model.state_dict(), new_model.state_dict(), clients_size, clients_size_frac, i, beta_GP)
global_model.load_state_dict(global_model_dict)
else:
global_model = copy.deepcopy(new_model)
elif args.convex_agg:
new_model, target_grads, (loss, acc, auc) = train_target(args, hparams, 'target', copy.deepcopy(global_model), criterion, server_dls['train'][0])
server_results['train']['loss'].append(loss)
server_results['train']['acc'].append(acc)
server_results['train']['auc'].append(auc)
if args.proj_w > 0:
metrics = empirical_metrics_batch(args.target_batch_size, source_grads, target_grads)
if args.log_metric:
metric_results['target_var'].append(metrics.target_var.item())
for i in range(num_clients):
metric_results['source_target_var'][clients[i]].append(metrics.source_target_var[i].item())
beta_DA = metrics.return_fedda_beta()
for idx, beta in enumerate(beta_DA):
server_results['beta'][clients[idx]].append(beta.item())
global_model_dict = update_global_convex(args, [model.state_dict() for model in local_models], global_model.state_dict(), new_model.state_dict(), clients_size, clients_size_frac, i, beta_DA)
global_model.load_state_dict(global_model_dict)
else:
global_model = copy.deepcopy(new_model)
else:
global_model_dict = average_weights([model.state_dict() for model in local_models], clients_size_frac)
global_model.load_state_dict(global_model_dict)
if args.finetune:
global_model, (loss, acc, auc) = train_target(args, hparams, 'target', global_model, criterion, server_dls['train'][0])
server_results['train']['loss'].append(loss)
server_results['train']['acc'].append(acc)
server_results['train']['auc'].append(auc)
global_model_dict = global_model.state_dict()
print('testing global model on its target domain')
(loss, acc, auc) = test(args, global_model, criterion, server_dls['test'][0])
server_results['test']['loss'].append(loss)
server_results['test']['acc'].append(acc)
server_results['test']['auc'].append(auc)
# test on the validation set
if args.early_stop:
(val_loss, val_acc, _) = test(args, global_model, criterion, server_dls['val'][0])
if val_loss < best_val_loss:
best_val_loss = val_loss
best_model_weights = global_model.state_dict()
epochs_no_improve = 0
server_results['best_val_test']['loss'] = loss
server_results['best_val_test']['acc'] = acc
else:
epochs_no_improve += 1
# Check if early stopping criteria are met
if epochs_no_improve == patience:
print("Early stopping! No improvement in validation loss for {} epochs.".format(patience))
break
with open(os.path.join(exp_dir,(f'server_results_{args.iter_idx}.json')), 'w') as fp:
json.dump(server_results, fp, indent=4)
fp.close()
if args.log_metric:
with open(os.path.join(exp_dir,(f'metric_results_{args.iter_idx}.json')), 'w') as fp:
json.dump(metric_results, fp, indent=4)
fp.close()