-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
142 lines (115 loc) · 4.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from copy import deepcopy
from torch.utils.tensorboard import SummaryWriter
from torch.nn.init import xavier_uniform_
from tqdm import tqdm
from src.model.KITM import KITM
from src.model.common import evaluate, count_parameters, make_infinite
from src.utils import config
from src.utils.common import set_seed
from src.utils.data.loader import prepare_data_seq
# ignore warnings
import warnings
warnings.filterwarnings("ignore")
def make_model(vocab, dec_num):
is_eval = config.test
model = KITM(
vocab,
decoder_number=dec_num,
is_eval=is_eval,
model_file_path=config.model_path if is_eval else None,
)
model.to(config.device)
# Intialization
for n, p in model.named_parameters():
if p.dim() > 1 and (n != "embedding.lut.weight" and config.pretrain_emb):
xavier_uniform_(p)
print("# PARAMETERS", count_parameters(model))
return model
def train(model, train_set, dev_set):
check_iter = 1000
max_tra_iter = 24000
try:
model.train()
best_ppl = 1000
best_loss = 1000
patient = 0
writer = SummaryWriter(log_dir=config.save_path)
weights_best = deepcopy(model.state_dict())
data_iter = make_infinite(train_set)
for n_iter in tqdm(range(1000000)):
loss, ppl, bce, topic_loss, accs, _, _, _ = model.train_one_batch(next(data_iter), n_iter)
(dia_acc, utt_acc, trg_acc) = accs
acc = utt_acc
writer.add_scalars("loss", {"loss_train": loss}, n_iter)
writer.add_scalars("ppl", {"ppl_train": ppl}, n_iter)
writer.add_scalars("cls_loss", {"cls_loss_train": bce}, n_iter)
writer.add_scalars("cltopic_losss_loss", {"topic_loss_train": topic_loss}, n_iter)
writer.add_scalars("accuracy", {"acc_train": acc}, n_iter)
if config.noam:
writer.add_scalars(
"lr", {"learning_rata": model.optimizer._rate}, n_iter
)
if (n_iter + 1) % check_iter == 0:
model.eval()
model.epoch = n_iter
loss_val, topic, ppl, dia_acc_val, ctx_acc_val, trg_acc_val, results = evaluate(
model, dev_set, ty="valid", max_dec_step=50
)
model.train()
if loss_val <= best_loss:
print("Loss: {:.4f} dia_acc: {:.4f} ctx_acc: {:.4f} trg_acc: {:.4f} *"
.format(loss_val, dia_acc_val, ctx_acc_val, trg_acc_val))
best_loss = loss_val
patient = 0
model.save_model(best_ppl, n_iter)
weights_best = deepcopy(model.state_dict())
else:
print("Loss: {:.4f} dia_acc: {:.4f} ctx_acc: {:.4f} trg_acc: {:.4f}"
.format(loss_val, dia_acc_val, ctx_acc_val, trg_acc_val))
patient += 1
if n_iter < max_tra_iter:
continue
if patient > 6:
break
except KeyboardInterrupt:
print("-" * 89)
print("Exiting from training early")
model.save_model(best_loss, n_iter)
weights_best = deepcopy(model.state_dict())
return weights_best
def test(model, test_set):
model.eval()
model.is_eval = True
print("TESTING NOW ....")
loss_val, topic, ppl_test, dia_acc_test, ctx_acc_test, trg_acc_test, results, dist1, dist2, avg_len = evaluate(
model, test_set, ty="test", max_dec_step=50
)
print("TEST: {:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t\n".format(loss_val, topic, ppl_test, dia_acc_test,
ctx_acc_test, trg_acc_test))
file_summary = config.save_path + "/results.txt"
with open(file_summary, "w") as f:
f.write("Loss\tAccuracy\n")
f.write(
"{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.2f}\t\n".format(
loss_val, topic, ppl_test, dia_acc_test, ctx_acc_test, trg_acc_test, dist1, dist2, avg_len
)
)
for r in results:
f.write(r)
def main():
set_seed() # for reproducibility
import os
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
train_set, dev_set, test_set, vocab, dec_num = prepare_data_seq(
batch_size=config.batch_size
)
model = make_model(vocab, dec_num)
if config.test:
test(model, test_set)
else:
weights_best = train(model, train_set, dev_set)
model.epoch = 1
model.load_state_dict({name: weights_best[name] for name in weights_best})
test(model, test_set)
if __name__ == "__main__":
main()