-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDivisores_de_un_numero.hs
226 lines (191 loc) · 6.09 KB
/
Divisores_de_un_numero.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
-- Divisores_de_un_numero.hs
-- Divisores de un número.
-- José A. Alonso Jiménez <https://jaalonso.github.io>
-- Sevilla, 22-septiembre-2022
-- ---------------------------------------------------------------------
-- ---------------------------------------------------------------------
-- Definir la función
-- divisores :: Integer -> [Integer]
-- tal que (divisores n) es el conjunto de divisores de n. Por
-- ejemplo,
-- divisores 30 == [1,2,3,5,6,10,15,30]
-- length (divisores (product [1..10])) == 270
-- length (divisores (product [1..25])) == 340032
-- ---------------------------------------------------------------------
{-# OPTIONS_GHC -fno-warn-type-defaults #-}
module Divisores_de_un_numero where
import Data.List (group, inits, nub, sort, subsequences)
import Data.Numbers.Primes (primeFactors)
import Data.Set (toList)
import Math.NumberTheory.ArithmeticFunctions (divisors)
import Test.QuickCheck
-- 1ª solución
-- ===========
divisores1 :: Integer -> [Integer]
divisores1 n = [x | x <- [1..n], n `rem` x == 0]
-- 2ª solución
-- ===========
divisores2 :: Integer -> [Integer]
divisores2 n = [x | x <- [1..n], x `esDivisorDe` n]
-- (esDivisorDe x n) se verifica si x es un divisor de n. Por ejemplo,
-- esDivisorDe 2 6 == True
-- esDivisorDe 4 6 == False
esDivisorDe :: Integer -> Integer -> Bool
esDivisorDe x n = n `rem` x == 0
-- 3ª solución
-- ===========
divisores3 :: Integer -> [Integer]
divisores3 n = filter (`esDivisorDe` n) [1..n]
-- 4ª solución
-- ===========
divisores4 :: Integer -> [Integer]
divisores4 = filter <$> flip esDivisorDe <*> enumFromTo 1
-- 5ª solución
-- ===========
divisores5 :: Integer -> [Integer]
divisores5 n = xs ++ [n `div` y | y <- ys]
where xs = primerosDivisores1 n
(z:zs) = reverse xs
ys | z^2 == n = zs
| otherwise = z:zs
-- (primerosDivisores n) es la lista de los divisores del número n cuyo
-- cuadrado es menor o gual que n. Por ejemplo,
-- primerosDivisores 25 == [1,5]
-- primerosDivisores 30 == [1,2,3,5]
primerosDivisores1 :: Integer -> [Integer]
primerosDivisores1 n =
[x | x <- [1..round (sqrt (fromIntegral n))],
x `esDivisorDe` n]
-- 6ª solución
-- ===========
divisores6 :: Integer -> [Integer]
divisores6 n = aux [1..n]
where aux [] = []
aux (x:xs) | x `esDivisorDe` n = x : aux xs
| otherwise = aux xs
-- 7ª solución
-- ===========
divisores7 :: Integer -> [Integer]
divisores7 n = xs ++ [n `div` y | y <- ys]
where xs = primerosDivisores2 n
(z:zs) = reverse xs
ys | z^2 == n = zs
| otherwise = z:zs
primerosDivisores2 :: Integer -> [Integer]
primerosDivisores2 n = aux [1..round (sqrt (fromIntegral n))]
where aux [] = []
aux (x:xs) | x `esDivisorDe` n = x : aux xs
| otherwise = aux xs
-- 8ª solución
-- ===========
divisores8 :: Integer -> [Integer]
divisores8 =
nub . sort . map product . subsequences . primeFactors
-- 9ª solución
-- ===========
divisores9 :: Integer -> [Integer]
divisores9 = sort
. map (product . concat)
. productoCartesiano
. map inits
. group
. primeFactors
-- (productoCartesiano xss) es el producto cartesiano de los conjuntos
-- xss. Por ejemplo,
-- λ> productoCartesiano [[1,3],[2,5],[6,4]]
-- [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
productoCartesiano :: [[a]] -> [[a]]
productoCartesiano [] = [[]]
productoCartesiano (xs:xss) =
[x:ys | x <- xs, ys <- productoCartesiano xss]
-- 10ª solución
-- ============
divisores10 :: Integer -> [Integer]
divisores10 = sort
. map (product . concat)
. mapM inits
. group
. primeFactors
-- 11ª solución
-- ============
divisores11 :: Integer -> [Integer]
divisores11 = toList . divisors
-- Comprobación de equivalencia
-- ============================
-- La propiedad es
prop_divisores :: Positive Integer -> Bool
prop_divisores (Positive n) =
all (== divisores1 n)
[ divisores2 n
, divisores3 n
, divisores4 n
, divisores5 n
, divisores6 n
, divisores7 n
, divisores8 n
, divisores9 n
, divisores10 n
, divisores11 n
]
-- La comprobación es
-- λ> quickCheck prop_divisores
-- +++ OK, passed 100 tests.
-- Comparación de la eficiencia
-- ============================
-- La comparación es
-- λ> length (divisores1 (product [1..11]))
-- 540
-- (18.55 secs, 7,983,950,592 bytes)
-- λ> length (divisores2 (product [1..11]))
-- 540
-- (18.81 secs, 7,983,950,592 bytes)
-- λ> length (divisores3 (product [1..11]))
-- 540
-- (12.79 secs, 6,067,935,544 bytes)
-- λ> length (divisores4 (product [1..11]))
-- 540
-- (12.51 secs, 6,067,935,592 bytes)
-- λ> length (divisores5 (product [1..11]))
-- 540
-- (0.03 secs, 1,890,296 bytes)
-- λ> length (divisores6 (product [1..11]))
-- 540
-- (21.46 secs, 9,899,961,392 bytes)
-- λ> length (divisores7 (product [1..11]))
-- 540
-- (0.02 secs, 2,195,800 bytes)
-- λ> length (divisores8 (product [1..11]))
-- 540
-- (0.09 secs, 107,787,272 bytes)
-- λ> length (divisores9 (product [1..11]))
-- 540
-- (0.02 secs, 2,150,472 bytes)
-- λ> length (divisores10 (product [1..11]))
-- 540
-- (0.01 secs, 1,652,120 bytes)
-- λ> length (divisores11 (product [1..11]))
-- 540
-- (0.01 secs, 796,056 bytes)
--
-- λ> length (divisores5 (product [1..17]))
-- 10752
-- (10.16 secs, 3,773,953,128 bytes)
-- λ> length (divisores7 (product [1..17]))
-- 10752
-- (9.83 secs, 4,679,260,712 bytes)
-- λ> length (divisores9 (product [1..17]))
-- 10752
-- (0.06 secs, 46,953,344 bytes)
-- λ> length (divisores10 (product [1..17]))
-- 10752
-- (0.02 secs, 33,633,712 bytes)
-- λ> length (divisores11 (product [1..17]))
-- 10752
-- (0.03 secs, 6,129,584 bytes)
--
-- λ> length (divisores10 (product [1..27]))
-- 677376
-- (2.14 secs, 3,291,277,736 bytes)
-- λ> length (divisores11 (product [1..27]))
-- 677376
-- (0.56 secs, 396,042,280 bytes)