-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMonotonia_de_la_imagen_inversa.thy
60 lines (53 loc) · 1.47 KB
/
Monotonia_de_la_imagen_inversa.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(* Monotonia_de_la_imagen_inversa.thy
Si u \<subseteq> v, entonces f⁻¹[u] \<subseteq> f⁻¹[v].
José A. Alonso Jiménez <https://jaalonso.github.io>
Sevilla, 4-abril-2024
------------------------------------------------------------------ *)
(* ---------------------------------------------------------------------
Demostrar que si u \<subseteq> v, entonces
f -` u \<subseteq> f -` v
------------------------------------------------------------------- *)
theory Monotonia_de_la_imagen_inversa
imports Main
begin
(* 1\<ordfeminine> demostración *)
lemma
assumes "u \<subseteq> v"
shows "f -` u \<subseteq> f -` v"
proof (rule subsetI)
fix x
assume "x \<in> f -` u"
then have "f x \<in> u"
by (rule vimageD)
then have "f x \<in> v"
using \<open>u \<subseteq> v\<close> by (rule set_rev_mp)
then show "x \<in> f -` v"
by (simp only: vimage_eq)
qed
(* 2\<ordfeminine> demostración *)
lemma
assumes "u \<subseteq> v"
shows "f -` u \<subseteq> f -` v"
proof
fix x
assume "x \<in> f -` u"
then have "f x \<in> u"
by simp
then have "f x \<in> v"
using \<open>u \<subseteq> v\<close> by (rule set_rev_mp)
then show "x \<in> f -` v"
by simp
qed
(* 3\<ordfeminine> demostración *)
lemma
assumes "u \<subseteq> v"
shows "f -` u \<subseteq> f -` v"
using assms
by (simp only: vimage_mono)
(* 4\<ordfeminine> demostración *)
lemma
assumes "u \<subseteq> v"
shows "f -` u \<subseteq> f -` v"
using assms
by blast
end