-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLimite_multiplicado_por_una_constante.thy
69 lines (64 loc) · 2.84 KB
/
Limite_multiplicado_por_una_constante.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
(* Limite_multiplicado_por_una_constante.thy
-- Límite multiplicado por una constante
-- José A. Alonso Jiménez
-- Sevilla, 15 de julio de 2021
-- ------------------------------------------------------------------ *)
(* ---------------------------------------------------------------------
-- En Isabelle/HOL, una sucesión u₀, u₁, u₂, ... se puede representar
-- mediante una función (u : \<nat> \<rightarrow> \<real>) de forma que u(n) es uₙ.
--
-- Se define que a es el límite de la sucesión u, por
-- definition limite :: "(nat \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> bool"
-- where "limite u c \<longleftrightarrow> (\<forall>\<epsilon>>0. \<exists>k::nat. \<forall>n\<ge>k. \<bar>u n - c\<bar> < \<epsilon>)"
--
-- Demostrar que que si el límite de u(i) es a, entonces el de
-- c*u(i) es c*a.
-- ------------------------------------------------------------------ *)
theory Limite_multiplicado_por_una_constante
imports Main HOL.Real
begin
definition limite :: "(nat \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> bool"
where "limite u c \<longleftrightarrow> (\<forall>\<epsilon>>0. \<exists>k::nat. \<forall>n\<ge>k. \<bar>u n - c\<bar> < \<epsilon>)"
lemma
assumes "limite u a"
shows "limite (\<lambda> n. c * u n) (c * a)"
proof (unfold limite_def)
show "\<forall>\<epsilon>>0. \<exists>k. \<forall>n\<ge>k. \<bar>c * u n - c * a\<bar> < \<epsilon>"
proof (intro allI impI)
fix \<epsilon> :: real
assume "0 < \<epsilon>"
show "\<exists>k. \<forall>n\<ge>k. \<bar>c * u n - c * a\<bar> < \<epsilon>"
proof (cases "c = 0")
assume "c = 0"
then show "\<exists>k. \<forall>n\<ge>k. \<bar>c * u n - c * a\<bar> < \<epsilon>"
by (simp add: \<open>0 < \<epsilon>\<close>)
next
assume "c \<noteq> 0"
then have "0 < \<bar>c\<bar>"
by simp
then have "0 < \<epsilon>/\<bar>c\<bar>"
by (simp add: \<open>0 < \<epsilon>\<close>)
then obtain N where hN : "\<forall>n\<ge>N. \<bar>u n - a\<bar> < \<epsilon>/\<bar>c\<bar>"
using assms limite_def
by auto
have "\<forall>n\<ge>N. \<bar>c * u n - c * a\<bar> < \<epsilon>"
proof (intro allI impI)
fix n
assume "n \<ge> N"
have "\<bar>c * u n - c * a\<bar> = \<bar>c * (u n - a)\<bar>"
by argo
also have "\<dots> = \<bar>c\<bar> * \<bar>u n - a\<bar>"
by (simp only: abs_mult)
also have "\<dots> < \<bar>c\<bar> * (\<epsilon>/\<bar>c\<bar>)"
using hN \<open>n \<ge> N\<close> \<open>0 < \<bar>c\<bar>\<close>
by (simp only: mult_strict_left_mono)
finally show "\<bar>c * u n - c * a\<bar> < \<epsilon>"
using \<open>0 < \<bar>c\<bar>\<close>
by auto
qed
then show "\<exists>k. \<forall>n\<ge>k. \<bar>c * u n - c * a\<bar> < \<epsilon>"
by (rule exI)
qed
qed
qed
end